Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
up từng bài thôi,nhiều thế ko thánh nào làm cho đâu.thách nhau ak
Câu 1 xem kỉ đề
\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)
a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35
=212.35-36+36+212.35
=213.35
b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)
=496.5-7.5-2.495
=712.5-7.5-2.710
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023
\(1-2+3-4+5-6+...+2019-2020+2021\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2019-2020\right)+2021\)
\(=-1-1-1-..-1+2021\)
\(=-1\cdot1010+2021\)
\(=-1010+2021\)
\(=-1011\)
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
Ta có : 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + ... + 2019 - 2020
= ( 1 - 2) + ( 3 - 4 )+ ( 5 - 6 ) + ( 7 - 8 ) + ... + ( 2019 - 2020)
= ( - 1 ) + ( -1 ) + ( - 1 ) + ( - 1 ) + .... + ( - 1 )
\---------------------------------------------------------------/
có tất cả 1010 số ( - 1 )
= ( - 1 ) . 1010
= ( - 1010 )
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
số năm nay luôn
\(A=2+4+6+...+2020-1-3-5-7-...-2009\)
\(=\left(2+4+6+...+2020\right)-\left(1+3+5+...+2009\right)\)
\(=\dfrac{\left(2020+2\right).\left(\dfrac{2020-2}{2}+1\right)}{2}-\dfrac{\left(2009+1\right)\left(\dfrac{2009-1}{2}+1\right)}{2}\)
\(=1021110-1010025=11085\)
\(A=\left(2-1\right)+\left(4-3\right)+\left(6-5\right)+...+\left(2010-2009\right)+2011+2012+...+2020\\ A=1+1+1+...+1+2011+2012+...+2021\\ A=1005+2011+2012+...+2020\\ A=1005+\left(2020+2011\right)\cdot10:2=1005+20155=21160\)
\(6.3^2+8^7:8^5-1^{2020}\)
\(=6.9+8^2-1\)
\(=54+64-1\)
\(=118-1\)
\(=117\)
\(6\cdot3^2+8^7:8^5-1^{2020}\)
\(=6\cdot9+8^{7-5}-1\)
\(=54+8^2-1\)
\(=53+64\)
\(=117\)