Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{100+98+96+94+...+4+2}{100-98+96-94+...+4-2}\)
\(=\frac{\text{[}\left(100-2\right):1+1\text{]}.102:2}{2+2+2+...+2\left(51s\text{ố}2\right)}\)
\(=\frac{5049}{102}=49\frac{1}{2}\)
\(S=6^2+6^4+6^6+...+6^{98}+6^{100}\)
=> \(6^2.S=6^4+6^6+6^8+...+6^{100}+6^{102}\)
=> \(6^2.S-S=35.S=6^{102}-6^2\)
=> \(S=\frac{6^{102}-6^2}{35}\)
s=6^+6^4+...+6^100
suy ra:6^2 s=6^2(6^2+6^4+...+6^100)
=6^4+6^6+...+6^102
6^2s-s=(6^4+6^6+...+6^102)-(6^2+6^4+...+6^100)
35s=6^102-6^2
suy ra:s=6^102-6^2/35
a) = 13 x 24 + 24 x 76 + 11 x 24 d)= (1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
= 24 x ( 13 + 76 + 11 ) = 0 + 0 +...+ 0
= 24 x 100 =0
= 2400
CÓ VIỆC BẬN NÊN MÌNH CHỈ LÀM ĐC ĐẾN ĐÓ THÔI !
d) 1-2-3+4+5-6-7+...+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+(9-10-11+12)+......+(97-98-99+100)
=0+0+0+0+.....+0
=0
Vay bang 0
Đặt S = 2.4 + 4.6 + 6.8 + .... + 98.100 + 100.102
<=> S = 2.( 2 + 2 ) + 4.( 4 + 2 ) + 6.( 6 + 2 ) + ...... + 98.( 98 + 2 ) + 100.( 100 + 2 )
<=> S = 2.2 + 22 + 2.4 + 42 + 2.6 + 62 + .... + 2.98 + 982 + 2.100 + 1002
<=> S = ( 22 + 42 + ... + 982 + 1002 ) + ( 2.2 + 2.4 + 2.6 + .... + 2.98 + 2.100 )
<=> S = 22.( 12 + 22 + ... +492 + 502 ) + 4.( 1 + 2 + 3 + .... + 49 + 50 )
Đặt A = 12 + 22 + 32 + .... + 492 + 502
B = 1 + 2 + 3 + .... + 49 + 50
=> S = 4A + 4B
A = 12 + 22 + 32 + .... + 492 + 502
<=> A = 1.1 + 2.2 + 3.3 + .... + 49.49 + 50.50
<=> A = 1.( 2 - 1 ) + 2.( 3 - 1 ) + 3.( 4 - 1 ) + .... + 49.(50 - 1 ) + 50.( 51 - 1 )
<=> A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + 49.50 - 49 + 50.51 - 50
<=> A = ( 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51 ) - ( 1 + 2 + 3 + ... + 49 + 50 )
Đặt C = 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51
D = 1 + 2 + 3 + .... + 49 + 50
=> A = C - D
C = 1.2 + 2.3 + 3.4 + ... + 49.50 + 50.51
<=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ..... + 49.50.3 + 50.51.3
<=> 3C = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + 4.5.( 6 - 3 ) + ..... + 49.50.( 51 - 48 ) + 50.51.( 52 - 49 )
<=> 3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50 + 50.51.52 - 49.50.51
<=> 3C = 50.51.52
=> C = ( 50.51.52 ) : 3 = 44200
D = 1 + 2 + 3 + .... + 50
SSH : ( 50 - 1 ): 1 + 1 = 50 ( SH )
=> D = ( 50 + 1 ) . 50 : 2 = 1275
=> A = 44200 - 1275 = 42925
B = 1 + 2 + 3 + ... + 49 + 50
SSH : ( 50 - 1 ) : 1 + 1 = 50 ( SH )
=> B = ( 50 +1 ) . 50 : 2 = 1275
=> S = ( 42925 + 1275 ) . 4 = 176800
Vậy S = 176800
\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)
\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)
\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)
a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\)
\(=\dfrac{102.101}{2}\Leftrightarrow51.101\)
\(M=101-100+99-98+...+3-2+1\)
Ta có: \(101:2=50\) (dư \(1\))
\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\)
Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"
\(\Rightarrow M=1+1+...+1+1=51.1=51\)
\(M\) có \(51\) số \(1\)
\(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)
Vậy \(A=101\)
b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\)
Ta có: \(T=3737.43-4343.37\)
\(T=37.101.43-43.101.37\)
\(T=0\)
\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\)
Vậy \(B=0\)
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200