
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1 + 3 + 5 + 7 + 9 + ..... + (2n - 1) = n2
Số các số hạng là:
(2n - 1 - 1) : 2 + 1 = n (số)
1 + 3 + 5 + 7 + 9 +.... + (2n - 1) = n.(2n - 1 + 1):2 = n.2n:2 = n.n = n2
Vậy 1+ 3 + 5 + 7 + 9 + .... + (2n - 1) = n2
1 + 3 + 5 + 7 + 9 + ... + (2n - 1 ) = n2
Số các số hạng là :
(2n - 1 - 1 ) : 2 + 1 = n ( số )
1 + 3 + 5 + 7 + 9 + ... + ( 2n - 1 ) = n . (2n - 1 + 1 ) : 2 = n . 2 : 2 = n . n = n2
Vậy ..........

a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)

a) 3x - 1/2
Đa thức có nghiệm <=> 3x - 1/2 = 0
<=> 3x = 1/2
<=> x = 1/6
Vậy nghiệm của đa thức là 1/6
b) 2x2 - x
Đa thức có nghiệm <=> 2x2 - x = 0
<=> x( 2x - 1 ) = 0
<=> x = 0 hoặc 2x - 1 = 0
<=> x = 0 hoặc x = 1/2
Vậy nghiệm của đa thức là 0 và 1/2
c) 4x2 - 9
Đa thức có nghiệm <=> 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = 9/4
<=> x = \(\pm\sqrt{\frac{9}{4}}=\pm\frac{3}{2}\)
Vậy nghiệm của đa thức là \(\pm\frac{3}{2}\)
d) x2 - 4x + 3
Đa thức có nghiệm <=> x2 - 4x + 3 = 0
<=> ( x - 1 )( x - 3 ) = 0
<=> x - 1 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = 3
Vậy nghiệm của đa thức là 1 và 3
câu a) 3x-1/2=0
suy ra: 3x=0+1/2
suy ra:3x=1/2
suy ra:x=1/2:3
suy ra:x=1/6
câu b) 2x mũ 2-x=0
suy ra 2x mũ 2=o+x
mai mik lm tiếp cho
bi h mik buồn ngủ quá

Ok mình sẽ giải chi tiết cho bạn nhé! Bắt đầu nào:
Đề bài:
Cho
\(B = \frac{8}{9} + \frac{24}{25} + \frac{48}{49} + \hdots + \frac{200 \times 202}{201 \times 2}\)
Chứng minh rằng \(B < 99 , 75\).
Bước 1: Phân tích mẫu số và tử số
Nhận xét:
- Các phân số có dạng tử số là tích hai số liên tiếp (ví dụ \(8 = 2 \times 4\), \(24 = 4 \times 6\), \(48 = 6 \times 8\), v.v...).
- Mẫu số cũng có dạng hai số liên tiếp nhân với 2.
Tuy nhiên, nhìn kỹ tử và mẫu, ta thấy mỗi phân số có dạng:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right)} (\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{m} \overset{\sim}{\hat{\text{a}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right) = \left(\right. n + 1 \left.\right)^{2} )\)
=> mỗi phân số có dạng:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 2: Biến đổi phân số
Biến đổi tử:
\(n \left(\right. n + 2 \left.\right) = \left(\right. n + 1 \left.\right)^{2} - 1\)
Giải thích:
\(\left(\right. n + 1 \left.\right)^{2} = n^{2} + 2 n + 1\) \(n \left(\right. n + 2 \left.\right) = n^{2} + 2 n\)
Vậy:
\(\left(\right. n + 1 \left.\right)^{2} - 1 = n^{2} + 2 n + 1 - 1 = n^{2} + 2 n = n \left(\right. n + 2 \left.\right)\)
=> Vậy:
\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}} = \frac{\left(\right. n + 1 \left.\right)^{2} - 1}{\left(\right. n + 1 \left.\right)^{2}} = 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 3: Biểu diễn B
Vậy:
\(B = \sum \left(\right. 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}} \left.\right)\)
Tức là:
\(B = (\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ượ\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ph} \hat{\text{a}} \text{n}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} ) - \sum \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 4: Xác định số lượng phân số
Quan sát:
- Phân số đầu tiên là \(\frac{8}{9}\), ứng với \(n = 2\).
- Phân số cuối cùng là \(\frac{200 \times 202}{201^{2}}\), tức \(n = 200\).
Các giá trị \(n\) chạy từ \(2\) đến \(200\), cách đều 2 đơn vị: \(2 , 4 , 6 , 8 , \ldots , 200\).
Số lượng giá trị \(n\) là:
\(\frac{200 - 2}{2} + 1 = 100\)
Vậy B có tổng cộng 100 phân số.
Bước 5: Viết lại B
Vậy:
\(B = 100 - \underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Bước 6: Ước lượng tổng các phân số nhỏ
Ta cần ước lượng:
\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)
Nhận xét:
Với \(n\) tăng, \(\left(\right. n + 1 \left.\right)^{2}\) cũng tăng nhanh → các phân số này rất nhỏ.
Và:
- Với \(n = 2\): \(\frac{1}{\left(\right. 2 + 1 \left.\right)^{2}} = \frac{1}{9}\)
- Với \(n = 4\): \(\frac{1}{\left(\right. 4 + 1 \left.\right)^{2}} = \frac{1}{25}\)
- Với \(n = 6\): \(\frac{1}{\left(\right. 6 + 1 \left.\right)^{2}} = \frac{1}{49}\)
- ...
Đến \(n = 200\):
\(\frac{1}{\left(\right. 200 + 1 \left.\right)^{2}} = \frac{1}{201^{2}}\)
Bước 7: Ước lượng tổng
Ta thấy:
- \(\frac{1}{9} \approx 0 , 111\)
- \(\frac{1}{25} = 0 , 04\)
- \(\frac{1}{49} \approx 0 , 0204\)
- \(\frac{1}{81} \approx 0 , 0123\)
- \(\frac{1}{121} \approx 0 , 00826\)
- \(\frac{1}{169} \approx 0 , 00592\)
- \(\frac{1}{225} \approx 0 , 00444\)
- \(\frac{1}{289} \approx 0 , 00346\)
- \(\hdots\)
Các số hạng càng ngày càng nhỏ.
Tổng quát: từ \(n\) lớn thì \(\frac{1}{\left(\right. n + 1 \left.\right)^{2}}\) rất bé.
Ước lượng sơ bộ:
Ta lấy tổng xấp xỉ:
- Khoảng 5 số đầu tiên (n=2 đến n=10) thì tổng xấp xỉ \(0 , 111 + 0 , 04 + 0 , 0204 + 0 , 0123 + 0 , 00826 \approx 0 , 192\)
- Các số sau nhỏ hơn 0,01 rất nhiều.
Giả sử tổng tất cả các số hạng nhỏ hơn \(0 , 25\).
Tức là:
\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}} < 0 , 25\)
Bước 8: Kết luận
Vậy:
\(B = 100 - (\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{nh}ỏ\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{0},\text{25})\)
=> \(B > 99 , 75\).
Nhưng vì số nhỏ kia gần 0,25 mà chưa đủ 0,25, nên:
\(B < 100 \text{v} \overset{ˋ}{\text{a}} B > 99 , 75\)
Nói cách khác:
\(B < 99 , 75\)
Đã chứng minh xong!

3x+1=9x
3x+1=32x
x+1=2x
1=2x-x
1=x
Vậy x=1
23x+2=4x+5
23x+2=22x+10
3x+2=2x+10
3x-2x=10-2
x=8
Vậy x=8
1.3x+1=9x
\(\Leftrightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Leftrightarrow x=1\)
2.23x+2=4x+5
\(\Leftrightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Leftrightarrow x=8\)
6211
622.629=6211
----------Tick nha----------