K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

e có thể giải theo cách sau e nha:

Ta thấy 2014 : 621 dư 151 (1)
và         2014 : 587 dư 253 (2)

ta nhân (1) với x nhân (2) với y 
=> 2014x : 621x dư 151 x

và 2014y : 587y dư 253 y
Cộng vế theo vế 

=> 2014(x+y) : 621x + 587y dư 151x + 253y
do 2014(x+y)  chia hết cho 2014 với mọi x; y Nguyên

mà theo giả thiết thấy 621x + 587y chia hết cho 2014
=> 151x + 253y chia hết cho 2014 (vì đã là số dư của một thương chia hết thì nó phải bằng 0 hoặc thuộc ước số bị chia)

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

3 tháng 12 2018

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

20 tháng 12 2018

ai biet giup

16 tháng 3 2020

a, Ta có : \(7x+4y⋮37\)

\(\Rightarrow23\left(7x+4y\right)⋮37\)

\(\Rightarrow161x+92y⋮37\)

\(\Rightarrow\left(13x+18y\right)+148x+74y⋮37\)

Mà \(\hept{\begin{cases}148x⋮37\\74x⋮37\end{cases}\Rightarrow13x+18y⋮37}\)

Vậy \(13x+18y⋮37\)

b, Ta có : \(A=\frac{2014^{2012}+1}{2014^{2013}+1}\)

\(\Rightarrow2014A=\frac{2014^{2013}+2014}{2014^{2013}+1}=\frac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\frac{2013}{2014^{2013}+1}\)

Ta có : \(B=\frac{2014^{2011}+1}{2014^{2012}+1}\)

\(\Rightarrow2014B=\frac{2014^{2012}+2014}{2014^{2012}+1}=\frac{2014^{2012}+1+2013}{2014^{2012}+1}=1+\frac{2013}{2014^{2012}+1}\)

Vì \(2014^{2013}+1>2014^{2012}+1\)

\(\Rightarrow\frac{1}{2014^{2013}+1}< \frac{1}{2014^{2012}+1}\Rightarrow1+\frac{1}{2014^{2013}+1}< 1+\frac{1}{2014^{2012}+1}\)

\(\Rightarrow2014A< 2014B\Rightarrow A< B\)