K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(60\%x+\frac{2}{3}x=\frac{1}{3}\cdot\frac{19}{3}\)

\(\Rightarrow\frac{3}{5}x+\frac{2}{3}x=\frac{19}{9}\)

\(\Rightarrow(\frac{3}{5}+\frac{2}{3})x=\frac{19}{9}\)

\(\Rightarrow\frac{19}{15}x=\frac{19}{9}\)

\(\Rightarrow x=\frac{19}{9}:\frac{19}{15}=\frac{95}{57}\)

Vậy \(x=\frac{95}{57}\)

18 tháng 9 2016

1/ \(\frac{1}{3x}:\frac{2}{3}=1\)

  <=> \(\frac{3}{3×2×x}=\:1\)

<=> \(\frac{1}{2x}=1\)<=> x = \(\frac{1}{2}\)

18 tháng 9 2016

Còn phần còn lại đọc không ra

15 tháng 9 2019

Tìm x nhé

24 tháng 10 2015

\(\frac{3^2.3^8}{27^3}=3x=>\frac{3^{10}}{\left(3^3\right)^3}=3x=>\frac{3^{10}}{3^9}=3x=>3^{10-9}=3x=>3x=3=>x=1\)

15 tháng 4 2020

   R(x) =           2x2 + 3x - 1

-  M(x) =   -x3 + x2 

                x3 + x2 + 3x - 1

Vậy R(x) - M(x) = x3 + x+ 3x - 1

8 tháng 11 2017

Mk chịu thui =)) Sorry ^o^

6 tháng 4 2022

`Answer:`

\(A=124.\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)

\(=\frac{124}{1984}.\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\)

\(B=\frac{1}{1.17}+\frac{1}{2.18}+...+\frac{1}{1984.2000}\)

\(=\frac{1}{16}.\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}.\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\)

\(=\frac{1}{16}.[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)]\)

`=>A=B`

14 tháng 8 2019

a) Ta có: \(\frac{x}{y}=\frac{9}{11}.\)

=> \(\frac{x}{9}=\frac{y}{11}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số băng nhau ta được:

\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{11}=3=>y=3.11=33\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(27;33\right).\)

b) Ta có: \(\frac{x}{y}=\frac{1,2}{2,5}\)

=> \(\frac{x}{1,2}=\frac{y}{2,5}\)\(y-x=26.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{1,2}=\frac{y}{2,5}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20.\)

\(\left\{{}\begin{matrix}\frac{x}{1,2}=20=>x=20.1,2=24\\\frac{y}{2,5}=20=>y=20.2,5=50\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(24;50\right).\)

d) Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}.\)

\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{48}=\frac{z}{42}.\)

=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)\(x+y+z=69.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{130}\) (câu d) hình như đề bị sai rồi bạn ơi, kết quả lớn lắm)

Chúc bạn học tốt!