Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)
\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)
2/
\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)
\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)
3/
\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)
\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)
\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)
\(=-1+2cos2a+1-cos2a=cos2a\)
\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)
\(tan10^0.tan80^0.tan20^0.tan70^0.tan30.tan60.tan40.tan50\)
\(=tan10.tan\left(90-10\right).tan20.tan\left(90-20\right).tan30.tan\left(90-30\right).tan40.tan\left(90-40\right)\)
\(=tan10.cot10.tan20.cot20.tan30.cot30.tan40.cot40\)
\(=1.1.1.1=1\)
Có vẻ bạn chép sai đề, do đề bài cho biết tam giác có 1 góc có số đo cố định ko phụ thuộc \(x\) nên ta cho x một giá trị bất kì rồi sử dụng định lý hàm cos để tính 3 góc, giả sử cho \(x=2\Rightarrow\left\{{}\begin{matrix}a=7\\b=5\\c=5\end{matrix}\right.\)
Tam giác này cân tại A nên chỉ cần tính góc A và B
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{50}\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{7}{10}\)
Không có đáp án nào cả
Sửa đề: (C) \(x^2+y^2+2x-4y=0\)
Đường tròn tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{5}\)
Do MA; MB là tiếp tuyến \(\Rightarrow MA=MB\)
Mà \(\widehat{AMB}=60^0\Rightarrow\Delta AMB\) đều \(\Rightarrow MA=MB=AB\)
\(\widehat{AIB}=180^0-60^0=120^0\)
\(\Rightarrow AB=\sqrt{IA^2+IB^2-2IA.IB.cos120^0}=\sqrt{15}\)
\(\Rightarrow IM=\sqrt{IA^2+AM^2}=\sqrt{5+15}=2\sqrt{5}\)
Do \(M\in d\Rightarrow M\left(m;m+1\right)\) \(\Rightarrow\overrightarrow{IM}=\left(m+1;m-1\right)\)
\(\Rightarrow\left(m+1\right)^2+\left(m-1\right)^2=20\)
\(\Leftrightarrow2m^2+2=20\Rightarrow m^2=9\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(3;4\right)\\M\left(-3;-2\right)\end{matrix}\right.\)
d1:y= kx + 1 có VTPT n1=(k;-1) và đường thẳng d2:x-y = 0 có VTPT n2=(1;-1)
=> cos(d1,d2)=/k+1/ /2
=> 1/2=/k+1/ /2
=> k+1=1 hoặc k+1=-1
=> k=0 hoặc k=-2
lời giải
đường thẳng x-y=0 chính đường phân giác Góc I và (III)
=> hợp chiều dương trục hoành góc 45 độ
d: y =kx+1 hợp với d2: x-y=0 góc 60 độ
=> d: hợp với trục hoành góc 165 độ hoặc 105 độ
từ đó
=>
k1 =-2-can3
k2 =căn3-2
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
Lời giải:
$8\sin ^2x\sin (x+60)\sin (x-60)=-4\sin ^2x[-2\sin (x+60)\sin (x-60)]$
$=-4\sin ^2x(\cos 2x-\cos 120^0)$
$=-4\sin ^2x(\cos 2x+\frac{1}{2})=-2(1-\cos 2x)(\cos 2x+\frac{1}{2})$
$=(\cos 2x-1)(2\cos 2x+1)=2\cos ^22x-1-\cos 2x$
$=\cos ^22x-\sin ^22x-\cos 2x=\cos 4x-\cos 2x$ (đpcm)
\(d_1\) : \(x-y+1=0\Rightarrow\overrightarrow{n_{d1}}=\left(1;-1\right)\)
Gọi vtecto pháp tuyến của d là \(\overrightarrow{n_d}=\left(a;b\right)\)
\(cos60^0=\frac{\left|a-b\right|}{\sqrt{1^2+1^2}\sqrt{a^2+b^2}}=\frac{1}{2}\)
\(\Leftrightarrow2\left(a-b\right)^2=a^2+b^2\Leftrightarrow a^2-4ab+b^2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\left(2+\sqrt{3}\right)b\\a=\left(2-\sqrt{3}\right)b\end{matrix}\right.\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;2+\sqrt{3}\right)\\\left(a;b\right)=\left(1;2-\sqrt{3}\right)\end{matrix}\right.\)
Phương trình d: \(\left[{}\begin{matrix}x+\left(2+\sqrt{3}\right)y=0\\x+\left(2-\sqrt{3}\right)y=0\end{matrix}\right.\)
Trả lời :
Bằng : 4 259 025
Vì : 60 x 5670000 x 0 = 0
12345 x 345 = 4 259 025 .
Vậy : 0 + 4 259 025 = 4 259 025
=0 nha
HT