Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
1)
a) \(\Leftrightarrow\left(4x-1\right)^2=9\Leftrightarrow4x-1=+-3\Leftrightarrow4x=1+-3\Leftrightarrow x=\frac{1+-3}{4}\)
b) \(x^3-3x^2+3x-1+3x^2-12x+1=0\Leftrightarrow x^3-9x=0\Leftrightarrow x^2\left(x-9\right)=0\)
=> x=0 hoặc x=9
c) \(x^2-6x+9=25\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow x-3=+-5\Leftrightarrow x=3+-5\)
d) câu này là chia hết cho 32 hả??
Tính A=6n2+n-1 chia cho 3n+2= 2n-1 dư 1
Để 6n2+n-1 chia hết cho 3n+2
ta có:
số dư 1 sẽ chia hết cho 3n+2
nên 3n+2 thuộc Ư(1) {1;-1}
3n+2=1
3n=1-2
3n=-1
n=-1:3
...tương tự thay 3n+2=-1
6n2 + n - 1 chia cho 3n + 2 đc 2n dư -3n-1
=> -3n - 1 = 0
=> n = -1/3
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1.
a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )
= 2x2 + 3( x2 - 1 ) - 5x2 - 5x
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -5x - 3
b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6
= 10x - 4
Bài 2.
a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0
<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0
<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x( x - 6 ) = 0
<=> x = 0 hoặc x = 6
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0
<=> x2 + 5x + 6 - x2 - 3x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
Bài 3.
A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2
= 5n2 + 5n
= 5n( n + 1 ) chia hết cho 5 ( đpcm )
B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )
= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )
= 6n2 + 31n + 5 - 6n2 - 7n + 5
= 24n + 10
= 2( 12n + 5 ) chia hết cho 2 ( đpcm )
bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=-3-5x\)
b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)
\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)
\(=10x-4\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)
\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
4x-1-x(2x+1)=0
<=>4x-1-2x2-x=0
<=>-2x2+3x-1=0
<=>-2x2+2x+x-1=0
<=>-2x(x-1)+(x-1)=0
<=>(x-1)(1-2x)=0
<=>x-1=0 hoặc 1-2x=0
<=>x=1 hoặc x=1/2
\(\frac{6n^2+n-1}{3n+2}=\frac{6n^2+4n}{3n+2}-\frac{3n+2}{3n+2}+\frac{1}{3n+2}=2n-1+\frac{1}{3n+2}\)
6n2+n-1 chia hết cho 3n+2 <=>1 chia hết cho 3n+1
<=>3n+2 là Ư(1)={+-1}
*)3n+2=1<=>x=-1/3(L)
*)3n+2=-1<=>x=-1
Vậy x=-1