K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{25^2}< \dfrac{1}{24\cdot25}=\dfrac{1}{24}-\dfrac{1}{25}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{25^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{25^2}< 1-\dfrac{1}{25}\)

=>\(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}< 2-\dfrac{1}{25}\)

=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}\right)< \dfrac{1}{4}\left(2-\dfrac{1}{25}\right)=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)

15 tháng 4 2017

Đặt \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)

Dễ thấy: \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)\(< A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\left(1\right)\)

Ta có:\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(=1-\dfrac{1}{8}< 1\left(2\right)\)

Từ \((1);(2)\) ta có: \(B< A< 1\Rightarrow B< 1\)

17 tháng 4 2018

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)

vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...............

\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)

nên \(B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\)

17 tháng 4 2018

ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

\(..........................\)

\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}\) ( 1 )

mà \(\frac{7}{8}< 1\) ( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow B< 1\)

vậy ......................

29 tháng 4 2019

có : 1/2^2 < 1/1*2; 1/3^2 < 1/2*3; 1/4^2 < 1/3*4;....; 1/8^2 < 1/7*8

=> B < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/7*8

=> B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8

=> B < 1 - 1/8

=> B  < 7/8 < 1

=> B < 1

29 tháng 4 2019

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)

\(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}\)

Mà : \(\frac{7}{8}< 1\)

\(\Rightarrow B< 1\)

Vậy : B < 1

20 tháng 3 2016

nhanh giúp mình

22 tháng 2 2016

Ta có: \(\frac{1}{1^2}=1\)

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

...

\(\frac{1}{50^2}<\frac{1}{49.50}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=> A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=> A < 1 - 1/50 = 49/50

Mà 49/50 < 50/50 = 1 < 2

=> A < 2 (Đpcm).

2 tháng 5 2015

Ta có:

1/2^2<1/1.2

1/3^2<1/2.3

...

1/1007^2<1/1006.1007

=>1/2^2+1/3^2+...+1/1007^2<1/1.2+1/2.3+...+1/1006.1007

=>1/2^2+1/3^2+...+1/1007^2<1-1/2+1/2-1/3+...+1/1006-1/1007

=>1/2^2+1/3^2+...+1/1007^2<1-1/1007<1

=>1/2^2+1/3^2+...+1/1007^2<1

=> (1/42 + 1/62 + 1/82 + ... + 1/20142).4<1/4.4

1/42 + 1/62 + 1/82 + ... + 1/2014<1/4