Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\left(x-2\right)\left(x-1\right)-\left(5x-4\right)\left(x-2\right)=0\)
<=>\(\left(5x-5\right)\left(x-2\right)-\left(5x-4\right)\left(x-2\right)=0\)
<=>\(\left(x-2\right)\left[\left(5x-5\right)-\left(5x-4\right)\right]=0\)
<=>\(\left(x-2\right)\left(5x-5-5x+4\right)=0\)
<=>\(\left(-1\right)\left(x-2\right)=0\)
<=>\(x-2=0\)
<=>\(x=2\)
Vậy phương trình có tập nghiệm là x=2
Bạn tham khảo:
5(x-2)(x-1)-(5x-4)(x-2)=0
<=>5(x2-3x+2)-(5x2-6x+8)=0
<=>5x2-15x+10-5x2+6x-8=0
<=>-9x+2=0
<=>-9x=-2
<=>x=2/9
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
\(5x-2007y=1\Rightarrow2007y< 5x< 15000\Rightarrow y< 8\)
\(2007y=5x-1>4\Rightarrow y>0\)
Các giá trị y nguyên từ 1 đến 7 thỏa mãn \(5x-2007y=1\)là y=2;y=7
Do đó ta có tập nghiệm là \(\left(x;y\right)\in\left\{\left(1001;2\right);\left(2810;7\right)\right\}\)
\(\left(2x-3\right)\left(3x+2\right)=6x\left(x-50\right)+44\\ \Leftrightarrow6x^2+4x-9x-6=6x^2-300x+44\\\Leftrightarrow 6x^2-6x^2+4x-9x+300x=6+44\\\Leftrightarrow 295x=50\\\Leftrightarrow x=\frac{10}{59}\)
Vậy phương trình trên có nghiệm là \(\frac{10}{59}\)
\(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(25x^2+10x+1-\left(25x^2-9\right)=30\)
\(25x^2+10x+1-25x^2+9=30\)
\(10x+10=30\)
\(10x=20\)
\(x=2\)
1 , <=> 25x^2 + 10x + 1 - ( 25x^2 - 9) = 30
<=> 25x^2 + 10x + 1 - 25x^2 + 9 = 30
<=> 10x + 10 = 30
<=> 10 ( x + 1) = 30
<=> x + 1 = 3
<=> x = 2
2, ( x + 3)(x^2 - 3x + 9 ) - x(x+2)(x-2) = 15
<=> x^3 - 27 - x(x^2 - 4) = 15
<=> x^3 - 27 - x^3 + 4x = 15
<=> 4x -27 = 15
<=> 4x = 15 + 27
<=> 4x =42
<=> x = 42/4 = 21/2
******************
\(5x^2+15x=5x^2-30\)
\(5x^2+15x-5x^2=-30\)
\(15x=-30\)
\(x=-2\)
hảo hán