Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x+5)(2x-7)=0
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-5\\2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{3}\\x=\frac{7}{2}\end{matrix}\right.\)
(-5x+2)(-3x-4)=0
\(\Leftrightarrow\left[{}\begin{matrix}\left(-5x+2\right)=0\\\left(-3x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-2\\-3x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=\frac{-3}{4}\end{matrix}\right.\)
(x-5)(4x-3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{4}\end{matrix}\right.\)
-2x(x+1)(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
\(\left(3x+5\right).\left(2x-7\right)=0\)
=> \(\left\{{}\begin{matrix}3x+5=0\\2x-7=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}3x=0-5=-5\\2x=0+7=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\left(-5\right):3\\x=7:2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{5}{3}\\x=\frac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{2}\right\}\).
\(\left(-5x+2\right).\left(-3x-4\right)=0\)
=> \(\left\{{}\begin{matrix}-5x+2=0\\-3x-4=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}-5x=0-2=-2\\-3x=0+4=4\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}x=\left(-2\right):\left(-5\right)\\x=4:\left(-3\right)\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\frac{2}{5}\\x=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{2}{5};-\frac{4}{3}\right\}\).
Mấy câu còn lại bạn làm tương tự nhé.
Chúc bạn học tốt!
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
a, x=-505
b, x=35/8 hoac -37/8
nhung cau con lai thi tong tu
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
Ta có : (x + 1)(x - 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Ta có : \(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\-\frac{1}{2}x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=1\\-\frac{1}{2}x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5.\left(-2\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)