Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:|2x-1|=2x-1\(\Leftrightarrow\)2x-1\(\ge\)0\(\Leftrightarrow\)x\(\ge\)\(\dfrac{1}{2}\)
|2x-1|=1-2x\(\Leftrightarrow\)2x-1<0\(\Leftrightarrow\)x<\(\dfrac{1}{2}\)
ĐK:\(x\ge\dfrac{1}{2}\)
\(2x-1=2x-1\)
\(\Leftrightarrow2x-1-2x+1=0\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow\)Tập no của PT là S={\(\forall x\)|x\(\ge\dfrac{1}{2}\)}
b.|0,5-3x|=3x-0,5\(\Leftrightarrow\)x<2,5
=0,5-3x\(\Leftrightarrow x\ge2,5\)
ĐK:x<2,5
Gỉai
0,5-3x=3x-0,5
\(\Leftrightarrow\)0,5-3x-3x+0,5=0
\(\Leftrightarrow\)1-6x=0
\(\Leftrightarrow x=\dfrac{1}{6}\)(TMĐKXĐ)
\(\Rightarrow\)tập no của PT là S={\(\dfrac{1}{6}\)}
c.|5x+1-10x|=0,5\(\Leftrightarrow\)|1-5x|=0,5\(\Leftrightarrow x< \dfrac{1}{5}\)
\(\Leftrightarrow\)|1-5x|=-0,5\(\Leftrightarrow\)x\(\ge\dfrac{1}{5}\)
ĐK:\(x< \dfrac{1}{5}\)
Gỉai
1-5x=0,5
\(\Leftrightarrow5x=0,5\)
\(\Leftrightarrow x=0,1\)(loại)
\(\Rightarrow pt\) trên vô nghiệm
d.|x+2|-|x-7|=0
ĐK:x\(\ne\pm2\);x\(\ne\pm7\)
Gỉai
\(\left\{{}\begin{matrix}x+2-x+7=0\\x-2-x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9=0\\-2x-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9=0\left(KTMĐKXĐ\right)\\x=-4,5\left(TMĐKXĐ\right)\end{matrix}\right.\)
\(\Rightarrow\)tập no của phương trình là S={-4,5}
a) \(4^{2x-6}=1\)
\(\Rightarrow4^{2x-6}=4^0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
b) \(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
c) \(5< 5x< 125\)
\(\Rightarrow\frac{5}{5}< \frac{5x}{5}< \frac{125}{5}\)
\(\Rightarrow1< x< 25\)
\(\Rightarrow\left\{x\inℤ|1< x< 25\right\}\)
d) mk không hiểu
\(\left(x+1\right)\left(x+7\right)< 0\)
thì \(x+1;x+7\)khác dấu
th1\(\hept{\begin{cases}x+1< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>-7\end{cases}\Rightarrow}-7< x< -1\left(tm\right)}\)
th2\(\hept{\begin{cases}x+1>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< -7\end{cases}\Rightarrow}-1< x< -7\left(vl\right)}\)
vậy với\(-7< x< -1\)thì \(\left(x+1\right)\left(x+7\right)< 0\)
a) (2x - 3) = 5
<=> 2x - 3 = 5
<=> 2x = 5 + 3
<=> 2x = 8
<=> x = 4
=> x = 4
b) (5x - 3) = 1/2
<=> 5x - 3 = 1/2
<=> 5x = 1/2 + 3
<=> 5x = 7/2
<=> x = 7/10
=> x = 7/10
c) (x + 1)(x + 7) < 0
<=> x = -1; -7
<=> x < -7 <=> x = -8 <=> (-8 + 1)(-8 + 7) < 0 <=> 7 < 0 (loại)
<=> -7 < x < -1 <=> x = -6 <=> (-6 + 1)(-6 + 7) < 0 <=> -5 < 0 (nhận)
<=> x > -1 <=> x = 0 <=> (x + 1)(x + 7) < 0 <=> 7 < 0 (loại)
Vậy: -7 < x < -1
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
a) \(-\dfrac{2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(\Rightarrow-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{1}{3}=\dfrac{2}{3}x+\dfrac{2}{3}x\)
\(\Rightarrow\dfrac{1}{2}=\dfrac{4}{3}x\)
\(\Rightarrow x=\dfrac{1}{2}:\dfrac{4}{3}=\dfrac{3}{8}\)
Vậy \(x=\dfrac{3}{8}\).