Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>9y2=25x2
<=>9(x2+4)=25x2
<=>9x2+9.4=25x2
<=>-16x2=-9.4
<=>-(4x)2=-62
<=>4x=6
<=>x=6/4=.............
=>y=5/2
Vậy.......
mk liệt số ''BA'' thông cảm kich luôn nha
ta có 3y = 5x \(\Rightarrow\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-4}{-16}=\frac{1}{4}\)
ta có
\(\frac{x^2}{9}=\frac{1}{4}\) \(x^2=\frac{9}{4}\) \(x=\frac{3}{2}\)hoặc \(x=\frac{-3}{2}\) | \(\frac{y^2}{25}=\frac{1}{4}\) \(y^2=\frac{25}{4}\) \(y=\frac{5}{2}\)hoặc \(y=\frac{-5}{2}\) |
b) 4x = 7y và \(x^2+y^2=260\)
Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)
\(x^2+y^2=49k^2+16k^2=65k^2=260\)
\(\Rightarrow k^2=4\Rightarrow k=+-2\)
Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)
\(\frac{y}{4}=2\Rightarrow y=4.2=8\)
Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)
\(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)
Kết luận : \(x=+-14\)
\(y=+-8\)
câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2= 64
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{16}=k\)
=> x2 =4k
y2= 16k
thay vào : x2.y2= 64
Ta có: 4k.16k= 64
64.k2 = 64
=> k = -1 ; 1
=> x2= 4.k => x2= -4; 4=> x= 2;-2
tương tự tìm y
Từ \(\hept{\begin{cases}2x=3y< =>\frac{x}{3}=\frac{y}{2}\\4z=5x< =>\frac{z}{5}=\frac{x}{4}\end{cases}< =>\frac{x}{12}}=\frac{y}{8}=\frac{z}{15}\)
Đặt \(\frac{x}{12}=\frac{y}{8}=\frac{z}{15}=k\)
\(< =>\hept{\begin{cases}\frac{x}{12}=k< =>x=12k\\\frac{y}{8}=k< =>y=8k\\\frac{z}{15}=k< =>z=15k\end{cases}}\)
Khi đó \(3y^2-z^2=-33\)
\(< =>z^2-3y^2=33\)
\(< =>\left(15k\right)^2-3\left(8k\right)^2=33\)
\(< =>225k^2-3.64k^2=33\)
\(< =>225k^2-192k^2=33\)
\(< =>33k^2=33\)
\(< =>k^2=1< =>\orbr{\begin{cases}k=1\left(1\right)\\k=-1\left(2\right)\end{cases}}\)
Với \(\left(1\right)< =>\hept{\begin{cases}x=12k=12\\y=8k=8\\z=15k=15\end{cases}}\)
Với \(\left(2\right)< =>\hept{\begin{cases}x=12k=-12\\y=8k=-8\\z=15k=-15\end{cases}}\)
Vậy ta có 2 bộ số \(\left\{x;y;z\right\}=\left\{-12;-8;-15\right\};\left\{12;8;15\right\}\)
bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk
a) x/6 = y/10
bn bình phuong tlt trên va nhân 2 ty số đầu mhe:
x/6 = x2/36 = 2x2/72
y/10 = y2/100
đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn
cung nhau di tren con dg tuoi sang
a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)
b) \(\frac{x^3}{8}=\frac{x}{2}\)
\(\frac{y^3}{64}=\frac{y}{4}\)
\(\frac{z^3}{216}=\frac{z}{6}\)
=>........ áp dụng t.chất dãy tỉ số = nhau
c)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=>6x=12( cùng tử)
=>x=2