Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{x+2}=\dfrac{5}{x-3}\left(x\ne-2;x\ne3\right)\)
suy ra: \(3\left(x-3\right)=5\left(x+2\right)\\ < =>3x-9=5x+10\\ < =>3x-5x=10+9\\ < =>-2x=19\\ < =>x=-\dfrac{19}{2}\left(tm\right)\)
\(\dfrac{3}{x+2}=\dfrac{5}{x-3}\)ĐKXĐ \(\left\{{}\begin{matrix}x+2\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\dfrac{5\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}\)
`<=> 3(x-3) =5 (x+2)`
`<=> 3x-9 = 5x+10`
`<=>3x -5x=10+9`
`<=> -2x=19`
`<=>x=-19/2`
a.16x-5x2-3 = - ( 5x2-16x+3) = -( 5x2-15x-x+3)= -[ 5x(x-3)-(x-3)] = -(5x-1)(x-3)
b.x^3-x+3x^2y+3xy^2+y^3-y = \(\left(x^3+3x^2y+3xy^2+y^3\right)-\)\(\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\)\(\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
c.x^4+8x = \(x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\)
d.x^2+x-6 = \(x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)\)
\(=\left(x+3\right)\left(x-2\right)\)
e.5x^2-10xy+5y^2-20z^2\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
f.2(x^5)-x^2-5x ( mik ko bik làm)
g.x^3-3x^2-4x+12 = \(x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-2^2\right)\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
h.x^4-5x^2+4 \(=\left(x^2\right)^2-4x^2+4-x^2\)
\(=\left(x^2-2\right)-x^2=\left(x^2-2+x\right)\left(x^2-2-x\right)\)
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
đk để phân thức = 0 là tử số =0
x4 - 5x2 + 4 = (x2 -1)(x2 - 4) = 0
x = -1;1;-2;2
ồ quên, chỉ lấy 2 nghiệm x = -2;2
còn x = -1;1 (loại) vì làm mẫu = 0(vô nghĩa)
\(\dfrac{5x+3}{x-4}=2\) (1)
ĐKXĐ: \(x\ne4\)
(1) \(\Leftrightarrow5x+3=2\left(x-4\right)\)
\(\Leftrightarrow5x+3=2x-8\)
\(\Leftrightarrow5x-2x=-8-3\)
\(\Leftrightarrow3x=-11\)
\(\Leftrightarrow x=\dfrac{-11}{3}\) (nhận)
Vậy \(S=\left\{\dfrac{-11}{3}\right\}\)
\(\dfrac{5x+3}{x-4}=2\text{ĐKXĐ:}x\ne4\)
\(\Leftrightarrow\dfrac{5x+3}{x-4}=\dfrac{2\left(x-4\right)}{x-4}MTC:x-4\)
\(\Rightarrow5x+3=2x-8\)
\(\Leftrightarrow5x+3-2x+8=0\)
\(\Leftrightarrow3x+11=0\)
\(\Leftrightarrow3x=-11\)
\(\Leftrightarrow x=\dfrac{-11}{3}\left(\text{nhận}\right)\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{-11}{3}\right\}\)