K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Nhân hai vế của phương trình thứ nhất với 2 rồi cộng từng vế của hai phương trình

5 x 3 + y = 2 2 x 6 − y 2 = 2 ⇔ 5 x 6 + y 2 = 4 x 6 − y 2 = 2 ⇔ 6 x 6 = 6 x 6 − y 2 = 2 ⇔ x = 1 6 1 6 . 6 − y 2 = 2 ⇔ x = 1 6 y = − 1 2

Vậy hệ đã cho có nghiệm duy nhất ( x ;   y )   =   6 6 ; − 2 2  

⇒ 6 x   +   3 3 y = 6. 6 6 + 3. 3 . − 2 2 = 6 − 3 2 6 = − 6 2

Đáp án: C

13 tháng 10 2017

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

11 tháng 7 2021

a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)

\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)

Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)

\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)

\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)

\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)

\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)

Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)

\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)

\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)

\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

 

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

1 tháng 4 2022

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

1 tháng 4 2022

 3x2 + 4x = 0

3 tháng 9 2016

giải dùm e với anh chị :( 

27 tháng 1 2018

Đối với hàm số y = 2x2, khi x ≠ 0 giá trị của y luôn dương

Khi x = 0 thì giá trị của y =0

Đối với hàm số y = - 2x2, khi x ≠ 0 giá trị của y luôn âm

Khi x = 0 thì giá trị của y =0

27 tháng 1 2019

a ) 5 x 2 + 2 x = 4 − x ⇔ 5 x 2 + 2 x + x − 4 = 0 ⇔ 5 x 2 + 3 x − 4 = 0

Phương trình bậc hai trên có a = 5; b = 3; c = -4.

b)

3 5 x 2 + 2 x − 7 = 3 x + 1 2 ⇔ 3 5 x 2 + 2 x − 3 x − 7 − 1 2 = 0 ⇔ 3 5 x 2 − x − 15 2 = 0

c)

2 x 2 + x − 3 = x ⋅ 3 + 1 ⇔ 2 x 2 + x − x ⋅ 3 − 3 − 1 = 0 ⇔ 2 x 2 + x ⋅ ( 1 − 3 ) − ( 3 + 1 ) = 0

Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).

d)

2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x ⇔ 2 x 2 − 2 ( m − 1 ) ⋅ x + m 2 = 0

Phương trình bậc hai trên có a = 2; b = -2(m – 1);  c   =   m 2

Kiến thức áp dụng

Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0

trong đó x được gọi là ẩn; a, b, c là các hệ số và a ≠ 0.