K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(5x^2+3x-2)^2=(4x^2-x-5)^2

=> 5x^2+3x-2=4x^2-x-5

=> ...

bạn tự lm nha. mk bận xíu. mà bài này bạn lm chuyển vế nha

9 tháng 3 2020

(5x2 + 3x - 2)2 - (4x2 - x - 5)2 = 0

<=> 9x4 + 38x3 + 28x2 - 22x + 21 = 0

<=> (x + 1)(x + 1)(x + 3)(9x - 7) = 0

de roi lam tiep di

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

12 tháng 6 2018

+)   (5x-1). (2x+3)-3. (3x-1)=0

10x^2+15x-2x-3 - 9x+3=0

10x^2 +8x=0

2x(5x+4)=0

=> x=0 hoặc x= -4/5

+)    x^3 (2x-3)-x^2 (4x^2-6x+2)=0

2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0

-2x^4 + 3x^3-2x^2=0

x^2(-2x^2+x-2)=0

-2x^2(x-1)^2=0

=> x=0 hoặc x=1

+)   x (x-1)-x^2+2x=5

x^2 -x -x^2+2x=5

x=5

+)     8 (x-2)-2 (3x-4)=25

8x - 16-6x+8=25

2x=33

x=33/2

1)\(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow2\left(2x-5\right)\left(24+5x\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}2x-5=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{5}{2};\frac{-24}{5}\right\}\)

2) \(0,5x\left(x-3\right)=\left(x-3\right)\left(2,5x-4\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(2,5x-4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[0,5x-\left(2,5x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-2,5x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-2x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-2x\right)=0\)

\(\Leftrightarrow\left(x-3\right)\cdot2\cdot\left(2-x\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x-3=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: x∈{2;3}

3) \(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left[2x-1-\left(3x-5\right)\right]=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-1}{2};4\right\}\)

4) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)+\left(2-3x\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11+2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(13-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\13-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\4x=13\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{13}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{2}{3};\frac{13}{4}\right\}\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

5 tháng 9 2019

a) 3x(4x - 3) - 2x(5 - 6x) = 0

=> 6x2 - 9x - 10x + 12x2 = 0

=> 18x2 - 19x = 0

=> x(18x - 19) = 0

=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)

b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0

=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0

=> 8x - 15 = 0

=> 8x = 15

=> x = 15 : 8 = 15/8

c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)

=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x

=> 4x - x2 - 5x2 - 15x = 0

=> -6x2 - 11x = 0

=> -x(6x - 11) = 0

=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)

5 tháng 9 2019

a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)

b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)

a) Ta có: 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)

b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)

\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

hay \(x=\frac{15}{8}\)

Vậy: \(x=\frac{15}{8}\)

c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)

\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)

\(\Leftrightarrow-6x^2-11x=0\)

\(\Leftrightarrow6x^2+11x=0\)

\(\Leftrightarrow x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)

d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)

\(\Leftrightarrow14x^2+18=0\)

\(\Leftrightarrow14x^2=-18\)

\(14x^2\ge0\forall x\)

nên \(x\in\varnothing\)

Vậy: \(x\in\varnothing\)

12 tháng 12 2021

Answer:

\(3x^2-4x=0\)

\(\Rightarrow x\left(3x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)

\(\left(x^2-5x\right)+x-5=0\)

\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

\(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

\(5x\left(x-3\right)-x+3=0\)

\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)

\(x^2-2x+5=0\)

\(\Rightarrow\left(x^2-2x+1\right)+4=0\)

\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)

Vậy không có giá trị \(x\) thoả mãn

\(x^2+x-6=0\)

\(\Rightarrow x^2+3x-2x-6=0\)

\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)