Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+5.x=0
x.x+5.x=0
x.(x+5)=0
*x=0
*x+5=0
x=0-5
x=-5
Vậy x=0 hoặc x=-5
\(\left(2x-5\right)^{2018}+\left(3y-8\right)^{2020}\le0\)
Nhận thấy:\(\left(2x-5\right)^{2018}\ge0;\)\(\left(3y-8\right)^{2020}\ge0\)
=> \(\left(2x-5\right)^{2018}+\left(3y-8\right)^{2020}\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\3y-8=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{8}{3}\end{cases}}\)
Vậy...
1, x\(^2\) - 5x = 0
\(\Rightarrow\)x(x-5) = 0
Th1: x = 0
Th2: x- 5 =0
x = 5
2, \(|x-9|\) .( -8) = - 16
\(|x-9|\) = (- 16). ( -8) = 128
Th1: x - 9 = 128
x = 128 + 9 = 137
Th2: x - 9 = - 128
x = -128 + 9 = - 119
3, Th1: 4- 5x = 24
5x = 4- 24 = -20
x = - 20 :5 = -4
Th2: 4- 5x = -24
5x = 4- (-24) = 28
x = 28 :5= 5,6
Vì x < hoặc = 0 \(\Rightarrow\) x = -4
4, x.( x - 2) > 0
\(\Rightarrow\) x và ( x- 2) cùng dấu
Th1: x và (x -2) cùng dương
+ \(\Rightarrow\) x > 0
+ (x - 2) > 0 \(\Rightarrow\) x > 2
Th2: x và ( x- 2) cùng âm
+ \(\Rightarrow\) x < 0
+ ( x - 2) < 0 \(\Rightarrow\) x < 2
Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2
5, x.( x - 2) < 0
\(\Rightarrow\) x và ( x- 2) khác dấu
Th1: x âm và ( x- 2) dương
+ \(\Rightarrow\) x < 0
+ (x -2 ) > 0 \(\Rightarrow\) x > 2
Th2: x dương và ( x- 2 ) âm
+ \(\Rightarrow\) x >0
+ (x - 2) < 0 \(\Rightarrow\) x < 2
d) Lập bảng xét dấu nhé:) Sai thì thôi:v
Với x < -5/4 thì pt trở thành \(-6x+2=0\Leftrightarrow6x=2\Leftrightarrow x=\frac{1}{3}\) (KTM)
Với \(-\frac{5}{4}\le x< \frac{3}{2}\): 2x + 8 = 0 tức là x = -4 (KTM)
Với x \(\ge\frac{3}{2}\) \(6x+2=0\Leftrightarrow x=-\frac{1}{3}\) (KTM)
Vậy không tồn tại x thỏa mãn đề bài
Bài làm
a) ( 2x + 1 )( x - 1 ) = 0
=> 2x + 1 = 0 hoặc x - 1 = 0
=> 2x = -1/2 hoặc x = 1
Vậy x = -1/2 hoặc x = 1.
b) 1/2x + 3 + x = 12
3/2x + 13 = 12
3/2x = -1
x = -1 : 3/2
x = -2/3
Vậy x = -2/3
~ Đag dùng đt nên bấm hơi khó, câu c tính kq của 8.27 rồi tính bình thg, câu d lầ 12 : 4 rồi lấy kq của 12 : 4 nhân cho 7. rồi ta sẽ có 6x - 36 = 21 sau đó tính bthg ~
# Học tốt #
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
Vì l 5x + 1 l \(\ge\)0 với mọi x thuộc Z
l 6y - 8 l\(\ge\)0 với mọi y thuộc Z
Do đó l 5x + 1 l + l 6y - 8 l \(\ge\)0
MÀ đề bài cho l 5x + 1 l + l 6y - 8 l < 0
=> Không có giá trị của x,y thỏa mãn đề bài
Vậy ...