Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
Lời giải:
\(x^3-4x^2+5x+10=0\)
\(\Leftrightarrow x^3+x^2-5x^2-5x+10x+10=0\)
\(\Leftrightarrow x^2(x+1)-5x(x+1)+10(x+1)=0\)
\(\Leftrightarrow (x+1)(x^2-5x+10)=0\)
\(\Rightarrow \left[\begin{matrix} x+1=0\\ x^2-5x+10=0\end{matrix}\right.\Leftrightarrow \Rightarrow \left[\begin{matrix} x=-1\\ (x-\frac{5}{2})^2=\frac{-15}{4}< 0(\text{vô lý-loại})\end{matrix}\right.\)
Vậy PT có nghiệm $x=-1$
\(\left(x-2\right)^2-5x+10=0\)
\(\Leftrightarrow\left(x-2\right)^2+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=-3\)
(x - 2)2 - 5x + 10 = 0
\(\Rightarrow\) x2 - 4x + 4 - 5x = -10
\(\Rightarrow\) x2 - 9x = -14
\(\Rightarrow\) x2 - 9x = 72 - 9 . 7
\(\Rightarrow\) x = 7
a. (4x−10)(24+5x)=0⇔4x−10=0(4x−10)(24+5x)=0⇔4x−10=0 hoặc 24+5x=024+5x=0
+ 4x−10=0⇔4x=10⇔x=2,54x−10=0⇔4x=10⇔x=2,5
+ 24+5x=0⇔5x=24⇔x=−4,824+5x=0⇔5x=24⇔x=−4,8
Phương trình có nghiệm x = 2,5 và x = -4,8
b. (3,5−7x)(0,1x+2,3)=0⇔3,5−7x=0(3,5−7x)(0,1x+2,3)=0⇔3,5−7x=0hoặc 0,1x+2,3=00,1x+2,3=0
+ 3,5−7x=0⇔3,5=7x⇔x=0,53,5−7x=0⇔3,5=7x⇔x=0,5
+ 0,1x+2,3=0⇔0,1x=−2,3⇔x=−230,1x+2,3=0⇔0,1x=−2,3⇔x=−23
Phương trình có nghiệm x =0,5 hoặc x = -23
A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)
B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
Câu C) bạn xem lại đề nha mik tính ko đc
D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) . Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)
Bài 1:
\(x^2-5x-6=0\)
\(\Leftrightarrow x^2+x-6x-6=0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(6x+6\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)
Vậy x=-1; x=6
Bài 2:
a) Ta có: \(x+y=10\Leftrightarrow y=10-x\) (1)
Từ (1) thay vào \(P=xy\) ta được:
\(P=x\left(10-x\right)\)
\(\Leftrightarrow P=10x-x^2\)
\(\Leftrightarrow P=-x^2+10x-5^2+5^2\)
\(\Leftrightarrow P=-\left(x^2-10x+5^2\right)+5^2\)
\(\Leftrightarrow P=-\left(x-5\right)^2+25\)
Vậy GTLN của P=25 khi \(x-5=0\Leftrightarrow x=5\)
b) \(P=x^2-5x\)
\(\Leftrightarrow P=x^2-2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2\)
\(\Leftrightarrow P=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\)
Vậy GTNN của \(P=\dfrac{-25}{4}\) khi \(x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)