Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
Vì \(x=7\) \(\Rightarrow\) \(x+1=8\) \(\left(\text{*}\right)\)
Thay \(\left(\text{*}\right)\) vào \(A\), ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
Tại \(x=7\) thì khi đó, \(A=7-5=2\)
Vậy, giá trị cua biểu thức \(x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\) là \(2\)
a) 6x - 3 = 8x + 9
6x = 8x + 9 + 3
6x = 8x + 12
6x - 6x = 8x - 6x + 12
0 = 2x + 12
0 - 12 = 2x
-12 = 2x
2x = -12
x = -12 : 2
x = -6
b) 7x - 5 = 13 - 5x
7x = 13 - 5x + 5
7x = 13 + 5 - 5x
7x = 18 - 5x
7x + 5x = 18 - 5x + 5x
12x = 18 - (5x - 5x)
12x = 18
12x = 18
x = 18 : 12
x = \(\frac{3}{2}\)(hoặc = 1,5)
c) 2 - 3x = 5x + 10
3x = 2 - (5x + 10)
3x = 2 - 5x - 10
3x = 2 - 10 - 5x
3x = -8 - 5x
3x - 3x = -8 - 5x + 3x
0 = -8 - (5x + 3x)
0 = -8 - 8x
-8 - 8x = 0
8x = -8 - 0
8x = -8
x = -8 : 8
x = -1
\(A=x^5-5x^4+5x^3-5x^2+5x-6\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(=-2\)
a) Ta có: \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\)
\(=x^2-3x^2y-\frac{12}{5}y^2+3x^2y\)
\(=x^2-\frac{12}{5}y^2\)(1)
Thay x=-2 và \(y=-\frac{1}{2}\) vào biểu thức (1), ta được:
\(\left(-2\right)^2-\frac{12}{5}\cdot\left(-\frac{1}{2}\right)^2\)
\(=4-\frac{12}{5}\cdot\frac{1}{4}\)
\(=4-\frac{3}{5}=\frac{17}{5}\)
Vậy: Giá trị của biểu thức \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\) tại x=-2 và \(y=-\frac{1}{2}\) là \(\frac{17}{5}\)
b) Ta có: x=7
nên 8=x+1
Thay 8=x+1 vào biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\), ta được:
\(x^{15}-x^{14}\cdot\left(x+1\right)+x^{13}\cdot\left(x+1\right)-x^{12}\cdot\left(x+1\right)+...-x^2\cdot\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+x^{12}-...-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
Vậy: Giá trị của biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\) tại x=7 là 2
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
\(4x^2-4x-35\) \(=\left(2x\right)^2-2.2x.1+1-36\)
\(=\left(2x-1\right)^2-6^2\)
\(=\left(2x-7\right)\left(2x+5\right)\)
\(18x^2-5x-2\) \(=\left(x-\frac{1}{2}\right)\left(x+\frac{2}{9}\right)\)
\(8x^3-26x^2+13x+5=\) \(8x^3-8x^2-18x^2+18x-5x+5\)
\(=8x^2\left(x-1\right)-18x\left(x-1\right)-5\left(x-1\right)\)
\(=\) \(\left(8x^2-18x-5\right)\left(x-1\right)\)
\(=\left(x-\frac{5}{2}\right)\left(x+\frac{1}{4}\right)\)\(\left(x-1\right)\)
\(\text{a) 5(2x-3)-4(5x-7)=19-2(x+11)}\)
\(10x-15-20x+28=19-2x-22\)
\(10x-20x+2x=19-22-28+15\)
\(-8x=-16\)
\(\Rightarrow x=2\)
\(\text{b) 4(x+3)-7x+17=8(5x-1)+166}\)
\(4x+12-7x+17=40x-8+166\)
\(4x-7x-40x=-8+166-17-12\)
\(-43x=129\)
\(x=-3\)
\(\text{c) 17-14(x+1)=13-4(x+1)-5(x-3)}\)
\(17-14x+14=13-4x-4-5x+15\)
\(-14x+4x+5x=13-4+15-14-17\)
\(-5x=-7\)
\(x=\frac{7}{5}\)
\(\text{d) 5x+3,5+(3x-4)=7x-3(x-0,5)}\)
\(5x+3,5+3x-4=7x-3x+1,5\)
\(5x+3x-7x+3x=1,5-3,5\)
\(x=-2\)
\(\text{e) 7(4x+3)-4(x-1)=15(x+0,75)+7}\)
\(28x+21-4x+4=15x+11,25+7\)
\(28x-4x-15x=11,25+7-4-21\)
\(9x=\frac{-27}{4}\)
\(x=\frac{-3}{4}\)
\(\text{f) 3x+2,42+o,8x=3,38-0,2x}\)
\(3x+0,8x+0,2x=3,38-2,42\)
\(4x=\frac{24}{25}\)
\(x=\frac{6}{25}\)
chúc bạn học tốt !!
\(5x^2+8x-13=0\)
\(\Rightarrow5x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Rightarrow\left(5x+13\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x+13=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{13}{5}\\x=1\end{matrix}\right.\).
\(5x^2+8x-13=0\Leftrightarrow5x^2-5x+13x-13=0\Leftrightarrow\left(5x^2-5x\right)+\left(13x-13\right)=0\Leftrightarrow5x\left(x-1\right)+13\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x+13\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\5x+13=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{-13}{5}\end{matrix}\right.\)
x=2
\(5x+13=8x+7\)
\(\Leftrightarrow5x-8x=7-13\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=2\)