K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(\left(5x-1\right)^2-81=0\)

\(\Leftrightarrow\left(5x-1\right)^2=81\)

\(\Leftrightarrow\orbr{\begin{cases}\left(5x-1\right)^2=9^2\\\left(5x-1\right)^2=\left(-9\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=9\\5x-1=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=10\\5x=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-8}{5}\end{cases}}\)

29 tháng 8 2021

Trả lời:

\(\left(5x-1\right)^2-81=0\)

\(\Leftrightarrow\left(5x-1-9\right)\left(5x-1+9\right)=0\)

\(\Leftrightarrow\left(5x-10\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-10=0\\5x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{5}\end{cases}}}\)

Vậy x = 2; x = - 8/5 là nghiệm của pt.

11 tháng 6 2019

#)Giải :

Câu 1 :

5x(1 - 2x ) - 3x ( x+18) = 0 

<=> 5x - 10x^2 - 3x^2 - 54x = 0 

<=> -13x^2 - 49x = 0 

<=> x= 0 hoặc x = - 49/13

Vậy x có hai giá trị là 0 và - 49/13

11 tháng 6 2019

#)Giải :

Câu 2 :

( 12x - 5 )( 4x - 1 ) + ( 3x - 7 )( 1 - 16x ) = 81

<=> 48x- 32x + 5 - 48x + 115x - 7 = 81

<=> 83x - 2 = 81

<=> x = 1

Vậy x = 1

26 tháng 5 2020

tìm x nha bạn

17 tháng 8 2017

* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)

* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)

* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)

\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)

17 tháng 8 2017

+ \(x^2-8x+12=0\)

\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)

\(\Rightarrow\left(x-4\right)^2-4=0\)

\(\Rightarrow\left(x-4\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

+ \(16x^2-81=0\)

\(\Rightarrow16x^2-9^2=0\)

\(\Rightarrow16x^2=9^2\)

\(\Rightarrow x^2=\dfrac{81}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)

 

10 tháng 12 2019

28 tháng 6 2018

a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(5x-1-5x\right)=0\Leftrightarrow1-5x=0\Leftrightarrow x=\dfrac{1}{5}\)

Vaayj........

b/ \(x\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

Vay......

c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=3\end{matrix}\right.\)

Vậy.....

28 tháng 6 2018

\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)

\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)

\(\Leftrightarrow\)\(5x-1=0\)

\(\Leftrightarrow\)\(5x=1\)

\(\Leftrightarrow\)\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}\)

\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)

Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)

\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)

Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)

\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)

Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)

Chúc bạn học tốt ~ 

28 tháng 6 2018

a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)

<=> \(-1\left(5x-1\right)=0\)

<=> \(5x-1=0\)

<=> \(5x=1\)

<=> \(x=\frac{1}{5}\)

b/ \(x\left(x+1\right)\left(x+2\right)=0\)

<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)

<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

<=> \(\left(3x+2\right)\left(x-3\right)=0\)

<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)

a) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)

b) Ta có: \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: S={2;3}

c) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: S={1;2}

d) Ta có: \(2x^2-6x+1=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)

mà \(2\ne0\)

nên \(x^2-3x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)

e) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)

25 tháng 1 2021

cho vào máy tính là ra hết

18 tháng 8 2021

a, \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)

b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)

c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)