Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(C=25\cdot\dfrac{-1}{125}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-1}{5}+\dfrac{1}{5}-\dfrac{1}{2}-\dfrac{1}{2}\)
=-1
b: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
\(=20-12+5-6=7\)
=1-2+3-4+5-6+...+19-20
=-1-1-1-1-1-1-...-1
20 so-1
=-1.20=-20
\(5\sqrt{16}-4\sqrt{9}-\sqrt{25}-0,3\sqrt{400}\)
\(=5.4-4.3+5-0,3.20\)
\(=20-12+5-6\)
\(=7\)
\(5.\sqrt{16}-4.\sqrt{9}+\sqrt{25}-0,3.\sqrt{400}\)
\(=5.4-4.3+5-\frac{3}{10}.20\)
\(=20-12+5-6\)
\(=8+5-6\)
\(=13-6\)
\(=7\)
\(A=\sqrt{1}-\sqrt{9}-\sqrt{16}-\sqrt{25}-....-\sqrt{400}\)
\(A=1-3-4-5-....-20\)
\(A=-206\)
1.
a. \(0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}=5-\dfrac{2}{5}=\dfrac{23}{5}>1\)
\(\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}=\dfrac{\dfrac{\sqrt{10}}{3}-\dfrac{3}{4}}{5}=\dfrac{-9+4\sqrt{10}}{60}\approx0,06< 1\)
\(\Rightarrow0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}>\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}\)
2.
Ta có:
\(\left(\sqrt{a+b}\right)^2=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2+2\sqrt{ab}+\left(\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
=> \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
1b.
Áp dụng công thức trên
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
2.
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\\ \Rightarrow a+b< a+2\sqrt{ab}+b\\ \Rightarrow2\sqrt{ab}>0\\ \Rightarrow\sqrt{ab}>0\)
Luôn đúng với mọi a;b dươn g
=> đpcm
d: \(D=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)
\(=-4:\dfrac{13}{12}\)
\(=-4\cdot\dfrac{12}{13}=-\dfrac{48}{13}\)
e: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
=20-12+5-6
=8+5-6
=13-6=7
f: \(F=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{2}:6\)
\(=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{12}\)
\(=\dfrac{27}{12}+\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{34}{12}=\dfrac{17}{6}\)
Ta có:
\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{34}< \sqrt{64}=8\)
Vậy, \(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
\(=20-12+5-6\)
\(=7\)
= 20 - 12 + 5 - 6
= 7