K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

trieu dang làm đúng rùi

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

26 tháng 6 2020

a)\(\frac{-2n^3+n^2-5n}{2n+1}\)= \(\frac{-n^2\left(2n+1\right)+n\left(2n+1\right)-6n}{2n+1}\)=\(\frac{\left(2n+1\right)\left(2n-1\right)-6n}{2n+1}\)

=\(\left(n-n^2\right)-\frac{6n}{2n+1}\)=\(\left(n-n^2\right)-\frac{3\left(2n+1\right)-3}{2n+1}\)=\(\left(n-n^2\right)-3-\frac{3}{2n+1}\)

Để (-2n3+n2-5n)⋮(2n+1) thì n∈Z

⇒n∈Z thì (2n+1)∈Ư(3)=\(\left\{-1;-3;1;3\right\}\)

Ta có bảng sau:

2n+1 1 3 -1 -3
n 0 1 -1 -2

Vậy n=(0;1;-1;-2) thì (-2n3+n2-5n) chia hết cho (2n+1).

b)\(\frac{3n^3+10n^2-5}{3n+1}\)=\(\frac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)

=\(\frac{\left(3n+1\right)\left(n^2+3n-1\right)-4}{3n+1}\)=\(\left(n^2+3n-1\right)-\frac{4}{3n+1}\)

Để (3n3+10n2-5)⋮(3n+1) thì n∈Z

⇒n∈Z thì (3n+1)∈Ư(4)=\(\left\{1;2;4;-1;-2;-4\right\}\)

Ta có bảng sau:

3n+1 1 2 4 -1 -2 -4
n 0 \(\frac{1}{3}\) 1 \(\frac{-2}{3}\) -1 \(\frac{-5}{3}\)

Vì n∈Z nên ta loại (\(\frac{1}{3}\) ;\(\frac{-2}{3}\); \(\frac{-5}{3}\)) .

Vậy n=(0;1;-1) thì (3n3+10n2-5) chia hết cho (3n+1).

chúc bạn học tốt ^_^

Đề thiếu rồi bạn ơi

3 tháng 12 2018

bài 1:

\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)

Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>2n thuộc {2;0;3;-1}

<=>n thuộc {1;0;3/2;-1/2}

Mà n thuộc Z

=> n thuộc {1;0}

bài 2 sửa đề x5-5x3+4x

Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8

Mà (3,5,8)=1

=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)

=>đpcm