Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\frac{5\left(x^2-16\right)+96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}+\frac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)
\(\frac{5x^2-80+96}{x^2-16}=\frac{2x^2-9x+4+3x^2+11x-4}{x^2-16}\)
\(\Leftrightarrow5x^2+16=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x+16-4+4=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\)
vậy \(x=8\)
Bài 2:
\(A=x^2+2x+2012\)
\(=\left(x^2+2x+1\right)+2011\)
\(=\left(x+1\right)^2+2011\)
Ta có: \(\left(x+1\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)
Hay \(A\ge2011,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy Min A=2011 tại x=-1
a) \(\frac{x+5}{4}\)-\(\frac{2x-5}{3}\)=\(\frac{6x-1}{3}\)+\(\frac{2x-3}{12}\)
⇔\(\frac{3\left(x+5\right)}{12}\)-\(\frac{4\left(2x-5\right)}{12}\)=\(\frac{4\left(6x-1\right)}{12}\)+\(\frac{2x-3}{12}\)
⇒ 3x+15-8x+20=24x-4+2x-3
⇔3x+15-8x+20-24x+4-2x+3=0
⇔-31x+42=0
⇔x=\(\frac{42}{31}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{42}{31}\)}
a/ĐKXĐ: \(y\ne4\)
Đặt \(y-4=x\)
\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne1\)
Đặt \(x-1=y\)
\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)
\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne5\)
\(\Leftrightarrow2x-5=3x-15\)
\(\Leftrightarrow x=10\)
d/ ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)
\(\Leftrightarrow3x=-24\Rightarrow x=-8\)
e/ ĐKXĐ: \(x\ne2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)
f/ DKXĐ: \(x\ne-\frac{1}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)
\(\Leftrightarrow4x^2-1=8\)
\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)
1. \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
<=> 3(3x-7)=5(2x-1)
<=> 9x-21=10x-5
<=> -21+5=10x-9x
<=> x=-16
2. \(\frac{3x-7}{2}+\frac{2x-1}{3}=-16\)
<=> \(\frac{3\left(3x-7\right)}{6}+\frac{2\left(2x-1\right)}{6}=\frac{-96}{6}\)
=> 9x-21+4x-2=-96
<=> 13x-23=-96
<=> 13x=-73
<=> x=\(\frac{-73}{13}\)
3. \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
<=> \(\frac{15x}{15}-\frac{5\left(x+1\right)}{15}=\frac{3\left(2x+1\right)}{15}\)
=> 15x-5x-5=6x+3
<=> 15x-5x-6x=3+5
<=> 4x=8
<=> x=2
4. \(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5-\left(5-2x\right)}{6}\)
<=>\(\frac{7-3x}{12}+\frac{9}{12}=\frac{24\left(x-2\right)}{12}+\frac{2\left[5-\left(5-2x\right)\right]}{12}\)
=> 7-3x+9=24x-48+4x
<=> -3x-24x-4x=-48-7
<=> -31x=-55
<=> x= \(\frac{55}{31}\)
5. \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
<=> \(\frac{7\left(2x-1\right)}{21}-\frac{3\left(5x+2\right)}{21}=\frac{21\left(x+13\right)}{21}\)
=> 14x-7-15x-6=21x+273
<=> 14x-15x-21x=273+7+6
<=> -22x=286
<=> x= -13
a/\(\Leftrightarrow3\left(3x-7\right)=5\left(2x-1\right)\Leftrightarrow9x-21=10x-5\Leftrightarrow x=-16\)
b/\(\Leftrightarrow\frac{9x-21+4x-2}{6}=-16\)\(\Leftrightarrow13x-23=-96\Leftrightarrow x=x=-\frac{73}{13}\)
c/\(\Leftrightarrow\frac{3x-x+1}{3}-\frac{2x+1}{5}=0\Leftrightarrow\left(2x+1\right)\left(\frac{1}{3}-\frac{1}{5}\right)=0\Leftrightarrow x=-\frac{1}{2}\)