Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Ta có:
\(4a^2+3ab-11b^2=4a^2+4ab-11ab-11b^2+10ab\)
\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)
\(=\left(4a-11b\right)\left(a+b\right)+10⋮5\)
\(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)
* \(a+b⋮5\Rightarrow a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(1\right)\)
* \(4a-11b⋮5\Rightarrow4a-11b=5a-10b-a+b\)
Vì \(5a-10b⋮5\Rightarrow a-b⋮5\)
\(a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(a^4-b^4⋮5\left(đpcm\right)\)
a: \(=\left(23^2\right)^3-\left(13^2\right)^3\)
\(=\left(23^2-13^2\right)\left(23^4+23^2\cdot13^2+13^4\right)\)
\(=360\cdot A⋮360\)
b: \(=5^6\left(5^6+1\right)=5^6\cdot15626\)
\(=5^2\cdot5^4\cdot26\cdot601=650\cdot A⋮650\)
Ta có: \(4a^2+3ab-11b^2\)
\(=5a^2+5ab-10b^2-a^2-2ab-b^2\)
\(=5a^2+5ab-10b^2-\left(a+b\right)^2\)
Vì \(5a^2+5ab-10b^2⋮5\Rightarrow\left(a+b\right)^2⋮5\Rightarrow a+b⋮5\)
\(\Rightarrow a^4-b^4=\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)⋮5\)
(vì a+b chia hết cho 5)
Vậy \(a^4-b^4⋮5\left(đpcm\right)\)
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
a) \(A=\left(1^3+10^3\right)+\left(2^3+9^3\right)+...+\left(5^3+6^3\right)\)\(=\left(1+10\right).\left(1+10+10^2\right)+\left(2+9\right)\left(2^2+18+9^2\right)+...+\left(5+6\right)\left(5^2+30+6^2\right)\)
=\(11\left(1+10+10^2+...+5^2+30+6^2\right)\)\(\Rightarrow A⋮11\)
b) \(A=\left(1^3+9^3\right)+\left(2^3+8^3\right)+...+\left(4^3+6^3\right)+5^3+10^3\)
\(=\left(1+9\right)\left(1+9+9^2\right)+\left(2+8\right)\left(2^2+16+8^2\right)+.....+\left(4+6\right)\left(4^2+24+6^2\right)+5^3+10^{\text{3}}\)
\(=10\left(1+9+9^2+...+4^2+24+6^2\right)+5^3+10^3\)
Do \(10\left(1+9+9^2+...+4^2+24+6^2\right)⋮5\); \(5^3⋮5\) và \(10^3⋮5\)
\(\Rightarrow A⋮5\)