\(5^{8^{2021}+23⋮24}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

18 tháng 12 2016

a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)

= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)

= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)

=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)

=\(\frac{1}{2}-1-1\)

=\(\frac{-3}{2}\)

b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)

= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)

= \(-12:\left\{\frac{-1}{12}\right\}^2\)

= \(-12:\frac{1}{144}\)

= \(-12.144\)

= -1728

c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)

= \(\frac{-7}{6}\)

d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)

= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)

= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)

= \(10.\frac{7}{5}\)

= 14

 

e) (1+2314).(0,834)2

= (1+2314).(\(\frac{4}{5}\)34)2

= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)

= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)

= \(\frac{17}{20}.\frac{1}{400}\)

= \(\frac{17}{8000}\)

 

21 tháng 10 2017

a. \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)

\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\)

\(=1+\left(-1\right)+0,5\)

\(=0,5\)

b. \(-12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)

\(=-12:\left(\dfrac{-1}{12}\right)^2\)

\(=-12:\dfrac{1}{144}\)

\(=-1728\)

c. \(\dfrac{7}{23}.\left[\left(-\dfrac{8}{6}\right)-\dfrac{45}{18}\right]\)

\(=\dfrac{7}{23}.\dfrac{-23}{6}\)

\(=\dfrac{-7}{6}\)

d. \(23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)

\(=23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}.\dfrac{7}{5}\)

\(=\left(23\dfrac{1}{4}-13\dfrac{1}{4}\right).\dfrac{7}{5}\)

\(=10.\dfrac{7}{5}\)

\(=14\)

e. \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(0,8-\dfrac{3}{4}\right)^2\)

\(=\dfrac{17}{12}.\left(\dfrac{1}{20}\right)^2\)

\(=\dfrac{17}{12}.\dfrac{1}{400}=\dfrac{17}{4800}\)

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{3}{2}\le x\le\dfrac{37}{24}-\dfrac{3-16}{24}=\dfrac{37-3+16}{24}=\dfrac{50}{24}=\dfrac{25}{12}\)

=>3/2<=x<=25/12

mà x là số nguyên

nên x=2

b: \(\Leftrightarrow-\dfrac{1}{23}-\dfrac{3}{23}-\dfrac{7}{23}< x\le\dfrac{1}{23}-\dfrac{8}{23}\)

=>-11<x<=-7

mà x là số nguyên

nên \(x\in\left\{-10;-9;-8;-7\right\}\)

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30

21 tháng 6 2019

a) Ta có: \(-\frac{37}{946}>-\frac{37}{296}=\frac{-37}{37.8}=-\frac{1}{8}\)

hoặc là em sẽ trình bày theo cách này:

Ta có: \(\frac{1}{8}=\frac{37}{296}\)

Vì 296<946 nên \(\frac{37}{296}>\frac{37}{946}\Rightarrow\frac{1}{8}>\frac{37}{946}\Rightarrow-\frac{1}{8}< -\frac{37}{946}\)

b) Vì \(-\frac{24}{25}< -\frac{24}{27};-\frac{23}{27}>-\frac{24}{27}\)

nên \(-\frac{24}{25}< -\frac{24}{27}< -\frac{23}{27}\)

21 tháng 6 2019

a) Gấp đôi tử và mẫu của phân số thứ hai lên 37 lần, ta được phân số: \(\frac{-1}{8}=\frac{-37}{296}\)

Vì \(\frac{-37}{946}>\frac{-37}{296}\)nên \(\frac{-37}{946}>\frac{-1}{8}\)

b) Vì \(\frac{-24}{25}< \frac{-24}{27}\)và \(\frac{-24}{27}< \frac{-23}{27}\)nên suy ra \(\frac{-24}{25}< \frac{-23}{27}\)