Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`75/20 - x = 3/2 xx 10`
`15/4 - x = 15`
`x = 15/4 - 15`
`x = -45/4`
`(12 xx 15) - X xx 1/4 = 120 xx 1/4`
`180 - X xx 1/4 = 30`
`X xx 1/4 = 180-30`
`X xx 1/4 = 150`
`X = 150 : 1/4`
`X = 600`
\(\dfrac{15}{4}-x=15\)
\(x=\dfrac{15}{4}-15\)
\(x=-\dfrac{45}{4}\)
\(\left(12\times15\right)-\dfrac{1}{4}x=120\times\dfrac{1}{4}\)
\(180-\dfrac{1}{4}x=30\)
\(-\dfrac{1}{4}x=30-180\)
\(-\dfrac{1}{4}x=-150\)
\(-x=-150:\dfrac{1}{4}\)
\(-x=-150\times4\)
\(-x=-600\)
\(x=600\)
\(x\times x+1\times1+2\times2+...+20\times20=2895\)
\(x\times x+1+4+9+16+25+36+49+...+400=2895\)
\(x\times x+2870=2895\)
\(x\times x=25=5\times5\)
\(\Rightarrow x=5\)
1.53x201=10653
2.
a)4 xX-15x4=6x15+X
<=>4x-60=90+x
<=>4x-x=60+90
<=>3x=150
<=>x=50
b(102+28-2x):20-5=1
<=>(130-2x):20=6
<=>130-2x=120
<=>2x=10
<=>x=5
c)1999x-x=1999+1997+1999
<=>1998x=5995
<=>\(x\approx3\)
d)105-5x=150:15
<=>105-5x=10
<=>5x=95
<=>x=19
e)(x+1)+(x+2)+(x+3)+...+(x+6)=78
<=>6x+21=78
<=>6x=57
<=>x=9,5
1) 53x201=53x200+53=10600+53=10653
2a)
4x-15x4=6x15+x
4x-60=90+x
4x-x=90+60
3x=150
x=50
b) x=5
c) x=3
d)x=19
e) x=9,5
\(\dfrac{1}{2}+x\times3-14=\dfrac{17}{20}\\ x\times3-\dfrac{27}{2}=\dfrac{17}{20}\\ x\times3=\dfrac{17}{20}+\dfrac{27}{2}=\dfrac{287}{20}\\ x=\dfrac{287}{20}:3=\dfrac{287}{60}\)
\(a,\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=1-\frac{15}{16}\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}\div4\)
\(\Leftrightarrow x=\frac{1}{64}\)
\(b,x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Leftrightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{13}+...+\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\frac{4}{55}\right]=\frac{3}{11}\)
\(\Leftrightarrow x-52=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+52\)
\(\Leftrightarrow x=\frac{575}{11}\)
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
\(x=\dfrac{9}{12}-\dfrac{2}{12}\)
\(x=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{1}{2020}\)
\(x=\dfrac{1010}{2020}-\dfrac{1}{2020}\)
\(x=\dfrac{1009}{2020}\)
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}-x\)
\(\Rightarrow\dfrac{3}{4}-x=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1\times2\times3\times4\times...\times2019}{2\times3\times4\times5\times...\times2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}-\dfrac{1}{2020}=\dfrac{1009}{2020}\)
a) \(5,64\times x+4,36\times x=20\)
\(x\times\left(5,64+4,36\right)=20\)
\(x\times10=20\)
\(x=20\div10\)
\(x=2\)
b) \(1+2+3+....+x=171\)
Số số hạng là : \(\left(x-1\right)\div1+1=x\) ( số hạng )
Tổng là : \(\left(x+1\right)\times x\div2=171\)
\(\left(x+1\right)\times x=171\times2\)
\(\left(x+1\right)\times x=342\)
mà \(342=18\times19\)
\(\Rightarrow x=18\)