Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 12 . ( x - 1 ) = 0
x - 1 = 0 : 12
x - 1 = 0
x = 0 + 1
x = 1
b) ( 6x - 39 ) : 3 = 201
6x - 39 = 201 . 3
6x - 39 = 603
6x = 603 + 39
6x = 642
x = 642 : 6
x = 107
c) 23 + 3x = 56 : 53
23 + 3x = 53
23 + 3x = 125
3x = 125 - 23
3x = 102
x = 102 : 3
x = 34
Các phần d , e , f Đỗ Ngọc Hoàng Hải làm tương tự như phần trên .
a/x =1 nha
b/(6x-39):3=201
6x-39 =201x3
6x-39 =603
6x = 603+39
6x = 642
6= 642:6=107
c/ 23+3.x=125
3x= 125-23=102
x= 102:3=34
d/ 541+(281-x)=735
281-x= 735-541=194
x=281-194=87
e/ 9x+2=20
9x=20-2
9x=18
x=18:9=9
f/71+(26-3x):5=75
(26-3x):5=75-71=4
26-3x=4x5=20
3x=26-20=6
x=6:3=2
tk nha ^^
đa thức đã cho có dạng f(x) =(x-1)(x-2)(x-3)+(2x+1)^3
Thủa mãn đầu điều kiện đầu bài:
f(x)=g(x).(3x-5)+m
f(x)=h(x).(5x+2)+n
f(x)=j(x).(7x-1)=p
f(5/3)=m; f(-2/5)=n ; f(1/7)=p
tự thay số nhé Đề ra lẻ quá không nhẩm được
\(A=\dfrac{x^{98}+x^{97}+x^{96}+...+x+1}{x^{32}+x^{31}+x^{30}+...+x+1}\\ x=2\\ \Rightarrow A=\dfrac{2^{98}+2^{97}+2^{96}+...+2+1}{2^{32}+2^{31}+2^{30}+...+2+1}\)
Đặt
\(B = 2^{98} + 2^{97} + 2^{96} + ... + 2 + 1 \\ C = 2^{32} + 2^{31} + 2^{30} + ... + 2 + 1\)
\(B=2^{98}+2^{97}+2^{96}+...+2+1\\ =\left(2-1\right)\left(2^{98}+2^{97}+2^{96}+...+2+1\right)\\ =2^{99}-1\\ =\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)\\ C=2^{32}+2^{31}+2^{30}+...+2+1\\ =\left(2-1\right)\left(2^{32}+2^{31}+2^{30}+...+2+1\right)\\ =2^{33}-1\\ A=\dfrac{B}{C}=\dfrac{\left(2^{33}-1\right)\left(2^{66}+2^{33}+1\right)}{2^{33}-1}=2^{66}+2^{33}+1\)
\(\frac{X+1}{99}+1+\frac{X+2}{98}+1+\frac{x+3}{97}+1+\frac{X+4}{96}+1=0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{X+100}{98}+\frac{X+100}{97}+\frac{X+100}{96}=0\Leftrightarrow\left(X+100\right)\times\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0 \)\(\Leftrightarrow X+100=0\Leftrightarrow x=-100\)
1) Ta có: P=4
nên \(x-2\sqrt{x}+22=4\sqrt{x}+12\)
\(\Leftrightarrow x-6\sqrt{x}+10=0\)(Vô lý)
3) Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}-2\left(\sqrt{2}-1\right)+22}{\sqrt{2}-1+3}\)
\(=\dfrac{3-2\sqrt{2}-2\sqrt{2}+2+22}{2+\sqrt{2}}\)
\(=\dfrac{27-4\sqrt{2}}{2+\sqrt{2}}\)
\(=\dfrac{\left(27-4\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
\(=\dfrac{\left(27\sqrt{2}-8\right)\left(\sqrt{2}-1\right)}{2}\)
\(=\dfrac{54-27\sqrt{2}-8\sqrt{2}+8}{2}\)
\(=\dfrac{64-35\sqrt{2}}{2}\)
Ta có: \(2x+3y=7\Leftrightarrow\dfrac{x}{3}+\dfrac{y}{2}=\dfrac{7}{6}\)
\(3x^2+5y^2=\dfrac{\left(\dfrac{x}{3}\right)^2}{\dfrac{1}{27}}+\dfrac{\left(\dfrac{y}{2}\right)^2}{\dfrac{1}{20}}\ge\dfrac{\left(\dfrac{x}{3}+\dfrac{y}{2}\right)^2}{\dfrac{1}{27}+\dfrac{1}{20}}=\dfrac{\left(\dfrac{7}{6}\right)^2}{\dfrac{1}{27}+\dfrac{1}{20}}=\dfrac{735}{47}\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{70}{47}\\y=\dfrac{63}{47}\end{matrix}\right.\)
\(\frac{96}{x-4}-\frac{120}{x+4}=1\)
\(\Leftrightarrow\frac{96}{x-4}-\frac{120}{x+4}-1=0\)
\(\Leftrightarrow\frac{96\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{120\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}-\frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Leftrightarrow\frac{96x+384}{x^2-2^2}-\frac{120x-480}{x^2-2^2}-\frac{x^2-2^2}{x^2-2^2}=0\)
\(\Leftrightarrow\left(96x+384-120x+480-x^2+2^2\right)\cdot\frac{1}{x^2-2^2}=0\)
\(\Leftrightarrow-x^2-24x+868=0\)
541 + ( 218 - x ) = 735
=> 541 + 218 - x = 735
=> x = 541 + 218 - 735
=> x = 24
96 - 3 . ( x + 1 ) = 42
=> 3 . ( x + 1 ) = 96 - 42
=> 3 . ( x + 1 ) = 54
=> x + 1 = 54 : 3
=> x + 1 = 18
=> x = 18 - 1
=> x = 17
541+(218-x)=735
218-x = 735-541
218-x = 194
x=218-194=24
96-3.(x+1)=42
3.(x+1)=96-42
3.(x+1)=54
x+1=54:3=18
x=18-1=17