K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

Từ\(\frac{x}{3}=\frac{y}{5}\) và x+y=16

Áp dụng tính chất của dãy tỉ số băng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

=>x=2.3=6

y=2.5=10

Vậy x=6 y=10

4 tháng 9 2016

 C1 : x/3=y/5 =>x=3y/5 
=>3y/5+y=16 
<=>8y/5=16 
=>y=16.5/8=10 
=>x=16-10=6
C2: Ta có: x/3 = y/5 = (x+y)/(3+5) = 16/8 = 2 (tính chất dãy tỉ số bằng nhau) 
Từ x/3 = 2 => x = 6. 
Từ y/5 = 2 => y = 10.

4 tháng 9 2016

x =\(\frac{40}{3}\)

y = \(\frac{8}{3}\)

10 tháng 11 2017

Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

\(\Rightarrow x=2.3=6\)

      \(y=2.5=10\)

Vậy x = 6 và y = 10

10 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

    \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=10\end{cases}}\)

10 tháng 7 2016

Ta có : \(\frac{x}{3}=\frac{y}{5}\)

Áp dụng dãy tỉ số bằng nhau :

Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z+y}{3+5}=\frac{16}{8}=2\)

\(\Rightarrow\frac{x}{3}=3.2=6\)

\(\Rightarrow\frac{x}{5}=5.2=10\)

Vậy x = 6 và y = 10

10 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

=>x=2.3=6

    y=2.5=10

Vậy x=6 và y=10

9 tháng 7 2017

Với x/3=y/5..

=>x*5=y*3 (theo tính chất)

=>x=y*3:5

=>x=y*3/5.

Mà x+y=16.

=>x=16:(3+5)*3=6.

y=16-6=10.

Vậy x=6 và y=10/

9 tháng 7 2017

bn ơi hình như đề thiếu y đâu v bn

15 tháng 6 2015

x = 6 

y = 10

15 tháng 6 2015

\(x=6\).

\(y=10\).

10 tháng 1 2017

a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

              \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)

Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2 x 10 = 20

      y = 2 x 15 = 30

      z = 2 x 21 = 42

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=> x = 2k ; y = 3k

=> xy = 6.k2

=> 54 = 6.k2

=> k2 = 54 : 6 = 9

=> k = 3 hoặc k = -3

=> x =  3 x 2=6 hoặc x =( -3) x 2 = -6

     y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9

10 tháng 1 2017

\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)  \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

\(\text{Áp dụng tính chất DTSBN có}\)

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)

\(\text{Vậy }x=20;y=30;z=42\)

\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(\text{Theo đề, ta có}\)

\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)

\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\)    \(y=3.3=9\text{ hoặc }y=-3.3=-9\) 

\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)

         \(\text{với k=-3\Rightarrow x=-6;y=-9}\)

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...