K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2024

\(\dfrac{5}{3.7}+\dfrac{5}{7.11}+...+\dfrac{5}{85.89}\)

\(\dfrac{5}{4}\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{85.89}\right)\)

\(\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)

\(\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{89}\right)\)

\(\dfrac{215}{534}\)

----------------------------

\(\dfrac{2}{15}+\dfrac{1}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)

\(\dfrac{1}{3}-\dfrac{1}{11}\)

\(\dfrac{8}{33}\)

\(K=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)

\(=\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{89}\right)=\dfrac{5}{4}\cdot\dfrac{86}{267}=\dfrac{215}{534}\)

2 tháng 8 2015

a.\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(=\frac{1}{3}-\frac{1}{111}=\frac{37}{111}-\frac{1}{111}=\frac{36}{111}=\frac{12}{37}\)

Vậy A=\(\frac{12}{37}\)

b.\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)

\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)

Vậy \(B=\frac{2}{7}\)

c.\(C=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)

\(\Rightarrow C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\right).\frac{1}{2}\)

\(=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)

\(=\frac{1}{4}-\frac{1}{16}=\frac{4}{16}-\frac{1}{16}=\frac{3}{16}\)

Vậy \(C=\frac{3}{16}\)

 

2 tháng 8 2015

A = \(\frac{4}{3.7}+\frac{4}{7.9}+...+\frac{4}{107.111}\)

A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{107}-\frac{1}{111}\)

A = \(\frac{1}{3}-\frac{1}{111}\)=\(\frac{12}{37}\)

2 câu sau tương tự. Mik ngại làm lắm -_-

4 tháng 3 2017

Bài tập 1:

S=2/15+2/35+2/63+2/99+2/143

\(\Rightarrow\)S=2/3x5 +2/5x 7 +2/7x9 +2/9x11 +2/11x13

\(\Rightarrow\)S=1/3 -1/5 +1/5 - 1/7 +1/7 -1/9 +1/9 -1/11 +1/11 -1/13

\(\Rightarrow\)S=1/3 -1/13

\(\Rightarrow\)S=13/39 -3/39

\(\Rightarrow\)S=10/39

S=3/1.4 +3/4.7+3/7.11 ..........sai đề rồi

Bài 2

A=5/11.16+5/16.21+5/21.26+...+5/61.66

\(\Rightarrow\)A=1/11+1/16+1/16-1/21+1/21-1/26+....+1/61-1/66

\(\Rightarrow\)A=1/11-1/66

\(\Rightarrow\)A=6/66-1/66

\(\Rightarrow\)A=5/66

25 tháng 7 2019

Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)

\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)

\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)

\(A=\frac{5}{39}\)

Câu còn lại cx dựa như vậy nhé bn ! 

Chúc bn hc tốt <3

25 tháng 7 2019

câu c hình như sai đề hả bn

11 tháng 3 2018

$\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}=\frac{2}{3.5}+\frac{2}{5.7}+$\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}$

=$\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{13}$

=$\frac{1}{3}-\frac{1}{13}=\frac{10}{39}$

Vậy....

11 tháng 3 2018

\(S=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)

\(S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)

\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)

\(S=\dfrac{1}{3}-\dfrac{1}{13}\)

\(S=\dfrac{13}{39}-\dfrac{3}{39}\)

\(S=\dfrac{10}{39}\)

Vậy \(S=\dfrac{10}{39}\)

1: \(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\)

=1/2*10/39

=5/39

2: \(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)=\dfrac{5}{2}\cdot\dfrac{10}{11}=\dfrac{50}{22}=\dfrac{25}{11}\)

30 tháng 8 2015

\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)

\(=\frac{5}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{11\cdot13}\right)\)

\(=\frac{5}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{5}{2}\cdot\left(1-\frac{1}{13}\right)\)

\(=\frac{5}{2}\cdot\frac{12}{13}\)

\(=\frac{30}{13}\)

30 tháng 8 2015

\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)

\(=5\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)

\(=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{5}{2}\left(1-\frac{1}{13}\right)\)

\(=\frac{5}{2}.\frac{12}{13}\)

\(=\frac{30}{13}\)