Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 ( 3 + 5 ) 2 2 + 3 + 5 + 2 ( 3 − 5 ) 2 2 − 3 − 5 2 3 + 5 4 + ( 5 + 1 ) 2 + 3 − 5 4 − ( 5 − 1 ) 2 = 2 3 + 5 5 + 5 + 3 − 5 5 − 5 2 ( 3 + 5 ) ( 5 − 5 ) + ( 3 − 5 ) ( 5 + 5 ) ( 5 + 5 ) ( 5 − 5 ) = 2 15 − 3 5 + 5 5 − 5 + 15 + 3 5 − 5 5 − 5 25 − 5 = 2. 20 20 = 2 V ậ y A = 2
\(\left(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\right)-\left(5-\frac{2\sqrt{6}}{\sqrt{3}}-\sqrt{2}\right)\)
=\(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}-5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\)
=\(\left(5-5\right)+\left(\frac{2\sqrt{6}}{\sqrt{3}}+\frac{2\sqrt{6}}{\sqrt{3}}\right)+\left(\sqrt{2}+\sqrt{2}\right)\)
=\(0+\frac{4\sqrt{6}}{\sqrt{3}}+2\sqrt{2}\)
=\(\frac{4\sqrt{2}.\sqrt{3}}{\sqrt{3}}+2\sqrt{2}\)
=\(4\sqrt{2}+2\sqrt{2}\)
=\(6\sqrt{2}\)
bạn đặt A=biểu thức rồi tính \(\frac{1}{\sqrt{2}}A\) là ra
\(M=\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{2-\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{5}+1}+\frac{2-\sqrt{5}}{2-\sqrt{5}-1}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{1-\sqrt{5}}\)
P/s làm tiếp nha , hình như bạn ghi đề sai dấu
Quy đồng khử mẫu bằng cách nhân với biểu thức để cho mẫu mất căn thức
\(a,\sqrt{75}+2\sqrt{3}-2\sqrt{7}\\ =\sqrt{25\cdot3}+2\sqrt{3}-2\sqrt{7}\\ =5\sqrt{3}+2\sqrt{3}-2\sqrt{7}\\ =7\sqrt{3}-2\sqrt{7}\)
\(b,\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{63}\\ =\left|4-\sqrt{7}\right|-\sqrt{9\cdot7}\\ =4-\sqrt{7}-3\sqrt{7}\\ =4-4\sqrt{7}\)
\(c,\dfrac{3}{\sqrt{5}+3}-\dfrac{\sqrt{5}}{\sqrt{5}-3}\\ =\dfrac{3\left(\sqrt{5}-3\right)}{5-3}-\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{5-3}\\ =\dfrac{3\sqrt{5}-9-5-3\sqrt{5}}{2}\\ =\dfrac{-14}{2}\\ =-7\)
\(B=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{2}.\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{2}.\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{2}.\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\left(3+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-1^2\right)}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left|\sqrt{5}-1\right|\)
\(=3\sqrt{5}+3-5-\sqrt{5}+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\)
\(\Rightarrow B=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Đặt \(\sqrt{3+\sqrt{5}}=a>0;\sqrt{3-\sqrt{5}}=b>0\Rightarrow ab=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-5}=2\)
Và \(a^2+b^2=6 \Rightarrow\left(a+b\right)^2=a^2+b^2+2ab=6+4=10\Rightarrow a+b=\sqrt{10}\) (vì a + b > 0 do a > 0,b>0)
\(B=b^2\cdot a+a^2\cdot b=ab\left(a+b\right)=2\sqrt{10}\)
Làm luôn nhé
\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)
\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)
\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)
\(2B=120+30\sqrt{15}-30\sqrt{5}\)
\(2B=120\)
\(B=60\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\left(\sqrt{5}+2\right)+\left(\sqrt{3}+1\right)-\left(\sqrt{5}+\sqrt{3}\right)\\ =\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}\\ =2+1=3\)