
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Tích chéo 2 hpt ta có:
\(6x^4-6y^4=15 x^3y-15y^3x\)
<=>\(6x^4-6y^4-15x^3y+15y^3x=0\)
<=> \(6(x^2-y^2)(x^2+y^2)-15xy (x^2-y^2)=0\)
<=>\((x^2-y^2)(6x^2+6y^2+15)=0\)
=> x2=y2
=> x=y hoặc x=-y
(*)x=y=>vô nghiệm
(*)x=-y=> vô no
Vậy hpt vô nghiệm


Dễ thấy \(x=0\)không phải là nghiệm của hệ
\(\left\{{}\begin{matrix}2x^2+3xy+y^2=15\\x^2+xy+y^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}16x^2+24xy+8y^2=120\\15x^2+15xy+15y^2=120\end{matrix}\right.\)
Lấy trên trừ dưới ta được
\(x^2+9xy-7y^2=0\)
Đặt \(y=tx\) thì được
\(x^2+9tx^2-7t^2x^2=0\)
\(\Leftrightarrow7t^2-9t-1=0\)
Tới đây thì đơn giản rồi nhé

a/ ĐKXĐ: \(\left\{{}\begin{matrix}3x+15\ne0\\9-4x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-5\\x\le\frac{9}{4}\end{matrix}\right.\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}x^3\ne0\\2x+8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x>-4\end{matrix}\right.\)
5234-15y=9859
15y=5234-9859
15y=-4625
y=-925/3