![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Phân tích đa thức thành nhân tử (trình bày rõ và hướng dẫn cách làm giùm em)
4x(x+y)(x+y+z)(x+z)+y2z2
![](https://rs.olm.vn/images/avt/0.png?1311)
Phân tích đa thức thành nhân tử (trình bày rõ và hướng dẫn cách làm giùm em)
4x(x+y)(x+y+z)(x+z)+y2z2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
![](https://rs.olm.vn/images/avt/0.png?1311)
4 chia 3 dư 1 nên 4n chia 3 dư 1 hay 4n - 1 chia hết cho 3.
do đó 43^2014 - 1 chia hết cho 3.
![](https://rs.olm.vn/images/avt/0.png?1311)
x + 1 = ( x + 1 )2
x + 1 = x2 + 2x + 1
x - 2x - x2 = - 1 + 1
- x - x2 = 0
- x ( x + 1) = 0
TH1: - x = 0 suy ra x = 0
TH2: x + 1 = 0 suy ra x = - 1
Vậy x = 0 hoặc x = - 1.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)
f(x) > 0
<=> x2 + 3 và x - 1 cùng dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
- \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại
Vậy x > 1
b.
\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)
g(x) < 0
<=> x2 + 9 và x + 1 khác dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
- \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại
Vậy không tìm được x thỏa mãn yêu cầu đề.
![](https://rs.olm.vn/images/avt/0.png?1311)
Thực ra 2 câu đầu rất dễ nha bạn ^^!
1) x4 + 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0
<=> (x3+x)(x+2) + 1=0
1>0
=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0
<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)
b)
x3+1=\(2\sqrt[3]{2x-1}\)
<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)
<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)
<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0
<=> x=1
(5-x)^2
=25-10x+x^2
HT