Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=3^0+3^1+3^2+...+3^{2023}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2020}+3^{2021}+3^{2022}+3^{2023}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+...+3^{2020}\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+...+3^{2020}\cdot40\)
\(=40\left(1+3^4+...+3^{2020}\right)\)
\(=20\cdot2\left(1+3^4+...+3^{2020}\right)⋮20\)
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
a: \(=3\cdot25-16:4=75-4=71\)
b: =20-30+1=-10+1=-9
c: \(=2^3\cdot3=24\)