K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

Ta có : 

\(f\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\)

\(f\left(x\right)=\left(x+1\right)\left(x+1\right)+1\) ( áp dụng tính chất phân phối của phép nhân đối với phép cộng ) 

\(f\left(x\right)=\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức \(f\left(x\right)\) không có nghiệm 

Chúc bạn học tốt ~ 

27 tháng 4 2018

Thanks bn 

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)

19 tháng 4 2018

ta có f(x)=x2+(x+1)2

Do x2\(\ge0\),\(\left(x+1\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+1\right)^2>0\)

(vì không thể đồng thời x=x+1=0 được vì\(x\ne x+1\))

=> đa thức f(x) vô nghiệm (đpcm)

tk mk nha bn

***** Chúc bạn học giỏi*****

19 tháng 4 2018

F(x)=x^2+(x+1)^2

       =x^2+x^2+1^2

       =2x^2+1

Mà x^2>=0  =>2x^2>=0   =>2x^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

f(-1)=1+4-5=0

f(5)=25-20-5=0

Do đó: x=-1; x=5 là các nghiệm của f(x)

4 tháng 3 2022

Ta có \(f\left(-1\right)=1+4-5=0\)

Vậy x = -1 là nghiệm đa thức trên 

\(f\left(5\right)=25-20-5=0\)

Vậy x = 5 là nghiệm đa thức trên 

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

29 tháng 3 2017

Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:

f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0

f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0

Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5

25 tháng 4 2016

\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R

 \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R

Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R

\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)

=>H(x) ko có nghiệm