K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

5) \(a^2-16=\left(a-4\right)\left(a+4\right)\)

6) \(16x^2-1=\left(4x\right)^2-1=\left(4x-1\right)\left(4x+1\right)\)

7) \(64a^2b^2-9=\left(8ab\right)^2-3^2=\left(8ab-3\right)\left(8ab+3\right)\)

8) \(49x^4y^4z^2-16=\left(7x^2y^2z\right)^2-4^2=\left(7x^2y^2z-4\right)\left(7x^2y^2z+4\right)\)

 

11 tháng 8 2016

Đề

Phân tích đa thức thành nhân tử

Áp dụng hằng đẳng thức \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

Ta có

5)

\(a^2-16=a^2-4^2=\left(a-4\right)\left(a+4\right)\)

6)

\(16x^2-1=\left(4x\right)^2-1^2=\left(4x-1\right)\left(4x+1\right)\)

7)

\(64a^2b^2-9=\left(8ab\right)^2-3^2=\left(8ab+3\right)\left(8ab-3\right)\)

8)

\(49x^2y^2z^2-16=\left(7xyz\right)^2-4^2=\left(7xyz-4\right)\left(7xyz+4\right)\)

1 tháng 8 2017

\(1.\)

\(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xyz^2\)

\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)

\(=\left(x^2z-xyz\right)\left(x-z\right)\)

\(=xz\left(x-y\right)\left(x-z\right)\)

\(2.\)

\(x^2-\left(a+b\right)xy+aby^2\)

\(=x^2-axy-bxy+aby^2\)

\(=x^2-bxy-axy+aby^2\)

\(=x\left(x-by\right)-ay\left(x-by\right)\)

\(=\left(x-ay\right)\left(x-by\right)\)

\(3.\)

\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=abx^2+b^2xy+a^2xy+aby^2\)

\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)

\(=\left(ax+by\right)\left(bx+ay\right)\)

\(4.\)

\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)

\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)

\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)

\(5.\)

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)

\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(6.\)

\(16x^2-40xy+2y^2\)

\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)

\(=\left(4x-5y\right)^2\)

\(7.\)

\(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)

\(=\left(5x^2+y\right)^2\)

\(8.\)

\(-16x^4y^6-24x^5y^5-9x^6y^4\)

\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)

\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)

\(=\left(4x^2y^3+3x^3y^2\right)^2\)

\(9.\)

\(16x^2-4y^2-8x+1\)

\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)

\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)

\(=\left(4x+1\right)^2-\left(2y\right)^2\)

\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)

\(10.\)

\(49x^2-25+42xy+9y^2\)

\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)

\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)

\(=\left(7x+3y\right)^2-5^2\)

\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)

1: \(4a^2b^4-c^4d^2\)

\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)

4: \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

5: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=a^3+b^3+3a^2b+3ab^2+a^3-3a^2b+3ab^2-b^3\)

\(=2a^3+6ab^2\)

\(=2a\left(a^2+3b^2\right)\)

30 tháng 9 2017

a) x2 - 2x - 4y2 - 4y

= (x2 - 4y2) - (2x + 4y)

= (x + 2y)(x - 2y) - 2(x + 2y)

= (x + 2y)(x - 2y - 2)

= (x + 2y)[x - 2(y + 1)]

b) x4 + 2x3 - 4x - 4

= (x4 - 4) + ( 2x3 - 4x)

= (x2 - 2)(x2 + 2) + 2x(x2 - 2)

= (x2 - 2)(x2 + 2 + 2x)

c) x3 + 2x2y - x -2y

= (x3 - x) + (2x2y - 2y)

= x(x2 - 1) + 2y(x2 - 1)

= (x + 2y)(x2 - 1)

a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)

b: \(=\left(4x^2-7x-50\right)^2-\left(16x^4+56x^3+49x^2\right)\)

\(=\left(4x^2-7x-50\right)^2-\left(4x^2+7x\right)^2\)

\(=\left(4x^2-7x-50-4x^2-7x\right)\left(4x^2-7x-50+4x^2+7x\right)\)

\(=\left(-14x-50\right)\left(8x^2-50\right)\)

\(=-4\left(7x+25\right)\left(2x-5\right)\left(2x+5\right)\)

d: \(=\left(x^2+y^2\right)^3-8x^3y^3\)

\(=\left(x^2+y^2-2xy\right)\left[x^4+2x^2y^2+y^4+2x^3y^2+2x^2y^3+4x^2y^2\right]\)

\(=\left(x-y\right)^2\cdot\left[x^4+y^4+6x^2y^2+2x^3y^2+2x^2y^3\right]\)

1. Dùng phương pháp hệ số bất định : a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ; c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2. 2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1. Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) : 1. a) 6x2 – 11x +...
Đọc tiếp

1. Dùng phương pháp hệ số bất định :

a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ;

c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2.

2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1.

Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) :

1. a) 6x2 – 11x + 3 ; b) 2x2 + 3x – 27 ; c) x2 – 10x + 24 ;

d) 49x2 + 28x – 5 ; e) 2x2 – 5xy – 3y2.

2. a) x3 – 2x + 3 ; b) x3 + 7x – 6 ; c) x3 – 5x + 8x – 4 ;

d) x3 – 9x2 + 6x + 16 ; e) x3 + 9x2 + 6x – 16 ; g) x3 – x2 + x – 2 ;

h) x3 + 6x2 – x – 30 ; i) x3 – 7x – 6 (giải bằng nhiều cách).

3. a) 27x3 + 27x +18x + 4 ; b) 2x3 + x2 +5x + 3 ; c) (x2 – 3)2 + 16.

4. a) (x2 + x)2 - 2(x2 + x) - 15 ; b) x2 + 2xy + y2 - x - y - 12 ;

c) (x2 + x + 1)(x2 + x + 2) - 12 ;

5. a) (x + a)(x + 2a)(x + 3a)(x + 4a) + a4 ;

b) (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 ;

c) 2(x4 + y4 + z4) - (x2 + y2 + z2)2 - 2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4.

6. (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến : đặt a + b = m và a - b = n.

7. a) 4x4 - 32x2 + 1 ; b) x6 + 27 ;

c) 3(x4 + x+2+ + 1) - (x2 + x + 1)2 ; d) (2x2 - 4)2 + 9.

8. a) 4x4 + 1 ; b) 4x4 + y4 ; c) x4 + 324.

9. a) x5 + x4 + 1 ; b) x5 + x + 1 ; c) x8 + x7 + 1 ;

d) x5 - x4 - 1 ; e) x7 + x5 + 1 ; g) x8 + x4 + 1.

10. a) a6 + a4 + a2b2 + b4 - b6 ; b) x3 + 3xy + y3 - 1.

Help me!!!!!!!!!!!!!!!!!

1

Bài 1: 

a: \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

b: \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

c: \(x^2-10x+24\)

\(=x^2-4x-6x+24\)

\(=x\left(x-4\right)-6\left(x-4\right)\)

\(=\left(x-4\right)\left(x-6\right)\)

d: \(49x^2+28x-5\)

\(=49x^2+28x+4-9\)

\(=\left(7x+2\right)^2-9\)

\(=\left(7x-1\right)\left(7x+5\right)\)

e: \(2x^2-5xy-3y^2\)

\(=2x^2-6xy+xy-3y^2\)

\(=2x\left(x-3y\right)+y\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+y\right)\)

a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)

c: \(=\left(x^2-y^2\right)^2-10\left(x^2-y^2\right)+25-4\left(x^2y^2+4xy+4\right)\)

\(=\left(x^2-y^2-5\right)^2-4\left(xy+2\right)^2\)

\(=\left(x^2-y^2-5-2xy-4\right)\left(x^2-y^2-5+2xy+4\right)\)

\(=\left(x^2-y^2-2xy-9\right)\left(x^2+2xy-y^2-1\right)\)