Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )
\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)
\(\Rightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow-3x+2x+x=10+4-14\)
\(\Leftrightarrow0=0\)
Vậy pt đã cho có nghiệm đúng với mọi x
<=> \(\frac{7}{8x}+\frac{5-x}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)(DK: x khác 0 và 2)
<=>\(\frac{7x\left(x-2\right)}{8x\left(x-2\right)}+\frac{10-2x}{8x\left(x-2\right)}=\frac{4x-4}{8x\left(x-2\right)}=\frac{x}{8x\left(x-2\right)}\)
<=>\(7x^2-14x+10-2x=4x-4+x\)
<=>\(7x^2-14x-2x-4x-x=-4-10\)
<=>\(7x^2-21x+14=0\)
<=>\(7\left(x^2-3x+2\right)=0\)
<=>\(x^2-3x+2=0\)
<=>\(x^2-x-2x+2=0\)
<=>\(x\left(x-1\right)-2\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x-2\right)=0\)
<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(TMDK\right)\\x=2\left(KTMDK\right)\end{cases}}\)
Vậy: x=1
\(\dfrac{7}{8x}+\dfrac{5-x}{4x^2-8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\)
ĐKXĐ: x ≠ 0; x ≠ 2
\(< =>\dfrac{14x-28+20-4x}{16x\left(x-2\right)}=\dfrac{8x-8+2x}{16x\left(x-2\right)}\)
Suy ra: 14x - 28 + 20 - 4x = 8x - 8 + 2x
<=> 14x - 8x - 2x - 4x = 28 - 20 - 8
<=> 0x = 0
Vậy: S = { x | x ≠ 0;2 }
ĐKXĐ: x∉{0;2}
Ta có: \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\Leftrightarrow\frac{5-x}{4x\left(x-2\right)}+\frac{7}{8x}-\frac{x-1}{2x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}=0\)
Suy ra: \(10-2x+7x-14-4x+4-x=0\)
\(\Leftrightarrow0x=0\)
Vậy: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2\right\}\end{matrix}\right.\)
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
3x.|x+1|−2x|x+2|=12
Với x < -2 ta có: 3x.(-x-1)-2x(-x-2)-12=0
<=> -3x2 - 3x + 2x2 + 4x -12 =0
<=> -x2 - x - 12=0
$\Leftrightarrow $ -(x2 +x+12)=0 ( vô lý)
Làm tương tự với 2 trường hợp còn lại: