
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


thỏ_con
Ko biết thì nói làm gì bạn
Công nhận bạn rảnh dễ sợ luôn
@@@

\(a,5x^2-3x\left(x-2\right)\)
\(=5x^2-3x^2+6x\)
\(=2x^2+6x\)
\(b,3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c, Đề ko rõ Yang Yang
\(d,7x\left(x-5\right)+3\left(x-2\right)\)
\(=7x^2-35x+3x-6\)
\(=7x^2-32x-6\)
\(e,5-4x\left(x-2\right)+4x^2\)
\(=5-4x^2+8x+4x^2\)
\(=5+8x\)
\(f,4x\left(2x-3\right)-5x\left(x-2\right)\)
\(=8x^2-12x-5x^2+10x\)
\(=3x^2-2x\)

\(\dfrac{4x}{x^2-4x+7}=\dfrac{3x}{x^2-5x+7}\)
\(\Leftrightarrow4x\left(x^2-5x+7\right)=3x\left(x^2-4x+7\right)\)
\(\Leftrightarrow4\left(x^2-5x+7\right)=3\left(x^2-4x+7\right)\)
\(\Leftrightarrow4x^2-20x+28=3x^2-12x+21\)
\(\Leftrightarrow x^2-8x+7=0\)
\(\Leftrightarrow x^2-7x-x+7=0\)
\(\Leftrightarrow x\left(x-7\right)-\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
Vậy x = 1 hoặc x = 7

Câu 1
-5x2(4x2-5x+7)
=-20x4+25x3-35x2
Câu 2
-3x(3/4.x2+2x-3)
=-9/4.x3-6x2+9x
Câu 3
(x2-1)(x2+2x)
=x2(x2+2x)-1(x2+2x)
=x4+2x3-x2-2x
cần cù bù siêng năng :))
\(\frac{4x}{x^2-4x+7}+\frac{3x}{x^2-5x+7}=2\)
ĐKXĐ : x ∈ R
<=> \(\frac{4x\left(x^2-5x+7\right)}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}+\frac{3x\left(x^2-4x+7\right)}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}=\frac{2\left(x^2-4x+7\right)\left(x^2-5x+7\right)}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}\)
<=> \(\frac{4x^3-20x^2+28x}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}+\frac{3x^3-12x^2+21x}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}=\frac{2x^4-18x^3+68x^2-126x+98}{\left(x^2-4x+7\right)\left(x^2-5x+7\right)}\)
=> 7x3 - 32x2 + 49x = 2x4 - 18x3 + 68x2 - 126x + 98
<=> 2x4 - 18x3 + 68x2 - 126x + 98 - 7x3 + 32x2 - 49x = 0
<=> 2x4 - 25x3 + 100x2 - 175x + 98 = 0
<=> 2x4 - 14x3 - 11x3 + 77x2 + 23x2 - 161x - 14x + 98 = 0
<=> 2x3( x - 7 ) - 11x2( x - 7 ) + 23x( x - 7 ) - 14( x - 7 ) = 0
<=> ( x - 7 )( 2x3 - 11x2 + 23x - 14 ) = 0
<=> ( x - 7 )( 2x3 - 2x2 - 9x2 + 9x + 14x - 14 ) = 0
<=> ( x - 7 )[ 2x2( x - 1 ) - 9x( x - 1 ) + 14( x - 1 ) ] = 0
<=> ( x - 7 )( x - 1 )( 2x2 - 9x + 14 ) = 0
<=> x - 7 = 0 hoặc x - 1 = 0 hoặc 2x2 - 9x + 14 = 0
<=> x = 7 hoặc x = 1 [ do 2x2 - 9x + 14 = 2( x2 - 9/2x + 81/16 ) + 31/8 = 2( x - 9/4 )2 + 31/8 ≥ 31/8 ∀ x ]
Vậy S = { 1 ; 7 }
\(\frac{4x}{x^2-4x+7}+\frac{3x}{x^2-5x+7}=2\)(TXĐ: \(D=ℝ\))
- \(x=0\)không thỏa mãn phương trình.
- \(x\ne0\)phương trình tương đương với:
\(\frac{4}{x-4+\frac{7}{x}}+\frac{3}{x-5+\frac{7}{x}}=2\)
Đặt \(t=x+\frac{7}{x}\).
Ta có: \(\frac{4}{t-4}+\frac{3}{t-5}=2\)
\(\Leftrightarrow\frac{4\left(t-5\right)+3\left(t-4\right)-2\left(t-4\right)\left(t-5\right)}{\left(t-4\right)\left(t-5\right)}=0\)
\(\Rightarrow4t-20+3t-12-2\left(t^2-9t+20\right)=0\)
\(\Leftrightarrow-2t^2+25t-72=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=8\\t=\frac{9}{2}\end{cases}}\)
Với \(t=8\Rightarrow x+\frac{7}{x}=8\Leftrightarrow x^2-8x+7=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)(tm).
Với \(t=\frac{9}{2}\Rightarrow x+\frac{7}{x}=\frac{9}{2}\Leftrightarrow x^2-\frac{9}{2}x+7=0\)(vô nghiệm).
Vậy phương trình có hai nghiệm \(x=1,x=7\).