\(4x^4-21x^2y^2+4y^4\)

Giúp mình với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2020

\(4x^4-21x^2y^2+4y^2=\left(2x^2\right)^2-2.2x^2.2y^2+\left(2y^2\right)^2-13x^2y^2\)

\(=\left(2x^2-2y^2\right)^2-\left(\sqrt{13}xy\right)^2\)

\(=\left(2x^2-\sqrt{13}xy-2y^2\right)\left(2x^2+\sqrt{13}xy-2y^2\right)\)

22 tháng 1 2019

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)

\(\Rightarrow yz+zx+xy=0\)

Vì:

\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)

Nên.....(tự kết luận nha)

23 tháng 1 2019

giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :

 vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)

                                           

9 tháng 12 2018

a, 15x3y5z : 5x2y3 = 3xy2z.

b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).

c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)

d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.

27 tháng 10 2018

a) \(4x^4-21x^2y^2+y^4\)

27 tháng 10 2018

Ấn nhầm :v

a) \(4x^4-21x^2y^2+y^4\)

\(=\left(2x^2\right)^2-2\cdot2x^2\cdot y^2+y^2-25x^2y^2\)

\(=\left(2x^2-y^2\right)^2-\left(5xy\right)^2\)

\(=\left(2x^2-5xy-y^2\right)\left(2x^2+5xy-y^2\right)\)

b) \(x^5-5x^3+4x\)

\(=x^5-4x^3-x^3+4x\)

\(=x^3\left(x^2-4\right)-x\left(x^2-4\right)\)

\(=\left(x^2-4\right)\left(x^3-x\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

15 tháng 10 2016

\(a,x^2-4x+4y^2+12y+13\)

Ta có : 

\(A=x^2-4x+4y^2+12y+13\)

\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)

\(=\left(x-2\right)^2+\left(2y+3\right)^2\)

Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)

    \(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)

\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)

Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)

Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\) 

8 tháng 1 2022

Answer:

\(2x^3+4x^2y+2xy^2\)

\(= 2 x ( x ² + 2 x y + y ² )\)

\(= 2 x ( x + y ) ² \)

\( − 3 x ^4 y − 6 x ^3 y ^2 − 3 x ^2 y ^3 \)

\(=-3x^2y(x^2+2xy+y^2)\)

\(=-3x^2y(x+y)^2\)

\(4x^5y^2+8x^4y^3+4x^3y^4\)

\(=4x^3y^2.x^2+4x^3y^2.2xy+4x^3y^2.y^2\)

\(=4x^3y^2.(x^2+2xy+y^2)\)

\(=4x^3y^2.(x+y)^2\)

11 tháng 8 2016

a) \(=-10x^6y^7+10x^5y^6+5x^3y^5\)

b) \(=-8x^5y^3+16x^7y^2-12x^3y^4\)

11 tháng 8 2016

làm sao ra vậy bạn, làm chi tiết cho mik đc k

18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

20 tháng 9 2020

a) 9x2 + y2 + 12x - 10y + 40

= ( 9x2 + 12x + 4 ) + ( y2 - 10y + 25 ) + 11

= ( 3x + 2 )2 + ( y - 5 )2 + 11 ≥ 11 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=5\end{cases}}\)

Vậy GTNN của biểu thức = 11 <=> x = -2/3 ; y = 5

b) 2x2 + 2y2 - 4x - 4y - 2xy + 30

= ( x2 - 2xy + y2 ) + ( x2 - 4x + 4 ) + ( y2 - 4y + 4 ) + 22

= ( x - y )2 + ( x - 2 )2 + ( y - 2 )2 + 22 ≥ 22 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

Vậy GTNN của biểu thức = 22 <=> x = y = 2

20 tháng 9 2020

a) Đặt \(A=9x^2+y^2+12x-10y+40\)

\(\Rightarrow A=\left(9x^2+12x+4\right)+\left(y^2-10y+25\right)+11\)

\(=\left(3x+2\right)^2+\left(y-5\right)^2+11\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(y-5\right)^2+11\ge11\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)

Vậy \(minA=11\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=5\end{cases}}\)

b) Đặt \(B=2x^2+2y^2-4x-4y-2xy+30\)

\(\Rightarrow B=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+22\)

\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+22\ge22\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\Leftrightarrow x=y=2\)

Vậy \(minB=22\)\(\Leftrightarrow x=y=2\)

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1