K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(=x^2y+3x-\dfrac{3}{4}-4x=x^2y-x-\dfrac{3}{4}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)

4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)

\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)

 

 

a: =xy(1/3+4-2)=7/3xy

b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2

c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2

d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z

16 tháng 10 2017

Câu a :

\(\left(3x^2-3y^2\right)+\left(4x-4y\right)=0\)

\(\Leftrightarrow3\left(x^2-y^2\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[3\left(x+y\right)+4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\3\left(x+y\right)+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=-\dfrac{4}{3}\Rightarrow x=-\dfrac{4}{3}-y\end{matrix}\right.\)

Vậy \(x=y\) hoặc \(x=-\dfrac{4}{3}-y\)

Câu b :

\(\left(12x^2-3xy\right)+\left(8x-2y\right)=0\)

\(\Leftrightarrow3x\left(4x-y\right)+2\left(4x-y\right)=0\)

\(\Leftrightarrow\left(4x-y\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-y=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{y}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{y}{4}\) hoặc \(x=-\dfrac{2}{3}\)

a: =3(x^2-y^2-4x+4y)

=3[(x-y)(x+y)-4(x-y)]

=3(x-y)(x+y-4)

b: \(=4x\left(x^2+y^2+2xy-16\right)\)

\(=4x\left[\left(x+y\right)^2-16\right]\)

\(=4x\left(x+y+4\right)\left(x+y-4\right)\)

c: \(=\left(x+4\right)^2-y^2=\left(x+4+y\right)\left(x+4-y\right)\)

d: \(=\left(x^2-1\right)\left(x^2-9\right)=\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x+3\right)\)