Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}\)
\(\Rightarrow\frac{2x}{4}=\frac{3y}{9}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)
tự lm tp
\(a)\frac{x}{2}=\frac{y}{3}\) và \(2x-3y=1\)
Ta có: \(\frac{x}{2}=\frac{2x}{4};\frac{y}{3}=\frac{3y}{9}\)
Mà: \(\frac{x}{2}=\frac{y}{3} \implies \frac{2x}{4}=\frac{3y}{9}\)
Áp dụng tính chất dãy các tỉ số bằng nhau ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)
Suy ra: \(\frac{x}{2}=\frac{1}{-5}\implies x=\frac{1.2}{-5}\implies x= \frac{-2}{5}\)
\(\frac{y}{3}=\frac{1}{-5}\implies y=\frac{1.3}{-5}\implies y=\frac{-3}{5}\)
Đặt : \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó : \(4\left(2k\right)-3\left(3k\right)=-2\)
\(\Rightarrow8k-9k=-2\)
\(\Rightarrow-k=-2\)
\(\Rightarrow k=2\)
\(\Rightarrow x=2.2=4\)
\(\Rightarrow y=2.3=6\)
\(\frac{x}{2}=\frac{y}{3}=\frac{4x-3y}{4.2-3.3}=\frac{-2}{-1}=1\)
\(\Rightarrow x=1.2=2\)
\(\Rightarrow y=1.3=3\)
Ta có: \(4x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(7y=5z\)\(\Rightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Ta có: \(yz-2x^2=110\)
\(\Rightarrow20k.28k-2.\left(15k\right)^2=110\)
\(\Rightarrow560k^2-2.225k^2=110\)
\(\Rightarrow560k^2-450k^2=110\)
\(\Rightarrow k^2\left(560-450\right)=110\)
\(\Rightarrow110k^2=110\)
\(\Rightarrow k^2=1\)
\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
+) Khi k = 1, ta có: \(\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\Rightarrow\hept{\begin{cases}x=15.1\\y=20.1\\z=28.1\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=28\end{cases}}\)
+) Khi k = -1, ta có: \(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)\\y=20.\left(-1\right)\\z=28.\left(-1\right)\end{cases}}\Rightarrow\hept{\begin{cases}x=-15\\y=-20\\z=-28\end{cases}}\)
Vậy...
Ta có: \(4x=3y\rightarrow\frac{x}{3}=\frac{y}{4}\rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(7y=5z\rightarrow\frac{y}{5}=\frac{z}{7}\rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\left(k\varepsilonℕ^∗\right)\)
=> x = 15k; y = 20k; z = 28k
Có: \(yz-2x^2=110\)
\(\Rightarrow20k\cdot28k-2\cdot(15k)^2=110\)
\(\Rightarrow560\cdot k^2-2\cdot225\cdot k^2=110\)
\(\Rightarrow560\cdot k^2-450\cdot k^2=110\)
\(\Rightarrow\left(560-450\right)\cdot k^2=110\)
\(\Rightarrow110\cdot k^2=110\) \(\Rightarrow k^2=1\)
\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
\(x=15k\rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
\(y=20k\rightarrow\orbr{\begin{cases}y=20\\y=-20\end{cases}}\)
\(z=28k\rightarrow\orbr{\begin{cases}z=28\\z=-28\end{cases}}\)
Vậy...........................
\(\frac{x}{1}=\frac{4x}{4};\frac{y}{2}=\frac{3y}{6};\frac{z}{3}=\frac{2z}{6}\)
mà \(\frac{x}{1}=\frac{y}{3}=\frac{z}{2}\) nên \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
áp dụng t/c dãy các tỉ số bằng nhau ta có
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
nếu \(\frac{x}{1}=9=>x=9\)
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
Vì \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Ta có : x2.y2 = 144
=> (xy)2 = 122
=> (12.k2)2 =122
=> 122.k4 = 122
=> k4 = 1
=> k = \(\pm\)1
=> Nếu k = 1 => x = 4 ; y = 3
Nếu k = - 1 => x = - 4 ; y = - 3
Từ: 4x=3y=>=\(\frac{x}{3}\)=\(\frac{y}{4}\)
Đặt: \(\frac{x}{3}\)=\(\frac{y}{4}\)=k=> x=3k; y=4k
mà x^2*y^2=144
=>(3k)^2*(4k)^2=144
=>9k^2*8k^2=144
=>k^2=144:(8*9)
=>k^2=2
=>k=\(\sqrt{2}\);\(-\sqrt{2}\)
bn tự tìm x;y nhé
kick mk nha