Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-2x2yz).(-3xy3z) = [(-2).(-3)].(x2.x)(y.y3).(z.z) = 6.x3.y4.z2
Đơn thức trên có hệ số bằng 6.
Bậc của tích trên là tổng bậc của các biến :
Biến x có bậc 3
Biến y có bậc 4
Biến z có bậc 2
⇒ Tích có bậc : 3 + 4 + 2 = 9
ta gọi x là biến của đa thức đó
ta có đa thức là \(2x^5+128\)
xét \(2x^5+128=0\Leftrightarrow x^5=64\)
\(\Leftrightarrow x=\sqrt[5]{64}\) Vậy đa thức có nghiệm duy nhất
Đa thức M có 3 hạng tử và bậc của chúng lần lượt là:
x6 có bậc 6
– y5 có bậc 5
x4y4 có bậc 4+4 = 8
Bậc 8 là bậc cao nhất
⇒ Đa thức M là đa thức bậc 8
Như vậy :
- Bạn Thọ và Hương nói sai.
- Nhận xét của bạn Sơn là đúng
- Câu trả lời đúng : Đa thức M có bậc là 8.
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
`a,`
`15x^3+x^4`
Bậc của đa thức: `4`
`2x^2-3`
Bậc của đa thức: `2`.
6