Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ấy, nhìn không kỹ nên sai sót kỹ thuật rồi, bước đặt nhân tử chung bị nhầm.
Làm lại cho chính xác hơn:
Hệ đã cho tương đương \(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\left(1\right)\\y=\dfrac{22-x^2}{x^2+2}\end{matrix}\right.\)
Đặt \(x^2-2=t\Rightarrow x^2=t+2\Rightarrow y=\dfrac{20-t}{t+4}\Rightarrow y-3=\dfrac{4\left(2-t\right)}{t+4}\left(2\right)\)
Thay (2) vào (1):
\(t^2-4+\dfrac{16\left(2-t\right)^2}{\left(t+4\right)^2}=0\Leftrightarrow\left(t-2\right)\left(t+2\right)+\dfrac{16\left(t-2\right)^2}{\left(t+4\right)^2}=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}=0\end{matrix}\right.\)
TH1: \(t-2=0\Rightarrow t=2\Rightarrow x^2=4\) \(\Rightarrow\left[{}\begin{matrix}x=-2;y=3\\x=2;y=3\end{matrix}\right.\)
TH2: \(t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}=0\Leftrightarrow\left(t+2\right)\left(t^2+8t+16\right)+16t-32=0\)
\(\Leftrightarrow t^3+8t^2+16t+2t^2+16t+32+16t-32=0\)
\(\Leftrightarrow t^3+10t^2+48t=0\)
\(\Leftrightarrow t\left(t^2+10t+48\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=0\\t^2+10t+48=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow\left[{}\begin{matrix}x=-\sqrt{2};y=5\\x=\sqrt{2};y=5\end{matrix}\right.\)
Vậy hệ đã cho có 4 cặp nghiệm:
\(\left(x;y\right)=\left(-2;3\right);\left(2;3\right);\left(-\sqrt{2};5\right);\left(\sqrt{2};5\right)\)
\(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\\\left(x^2+2\right).y=22-x^2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\\y=\dfrac{22-x^2}{x^2+2}\end{matrix}\right.\)
Đặt \(x^2-2=t\ge-2\)
\(\Rightarrow x^2=t+2\Rightarrow y=\dfrac{20-t}{t+4}\Rightarrow y-3=\dfrac{8-4t}{t+4}=\dfrac{4\left(2-t\right)}{t+4}\)
Thay vào pt trên ta được:
\(t^2-4+\dfrac{16\left(2-t\right)^2}{\left(t+4\right)^2}=0\Leftrightarrow\left(t-2\right)\left(t+2\right)+\dfrac{16\left(t-2\right)^2}{\left(t+4\right)^2}=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2+\dfrac{16}{\left(t+4\right)^2}\right)=0\)
\(\Leftrightarrow t-2=0\) (do \(t+2+\dfrac{16}{\left(t+4\right)^2}>0\) \(\forall t\ge-2\) )
\(\Rightarrow t=2\Rightarrow x^2-2=2\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=3\\x=-2\Rightarrow y=3\end{matrix}\right.\)
Vậy hệ đã cho có 2 cặp nghiệm:
\(\left(x;y\right)=\left(-2;3\right);\left(2;3\right)\)
\(B=\sqrt{16a^4}+6a^2=4a^2+6a^2=10a^2\)\(A=\sqrt{49a^2}+3a=7a+3a=10a\)
\(C=4x-\sqrt{\left(x^2-4x+4\right)}=4x-\sqrt{\left(x-2\right)^2}=4x-x+2=3x+2\)
\(E=\sqrt{y^2+6y+9}-\sqrt{y^2-6y+9}=\sqrt{\left(y+3\right)^2}-\sqrt{\left(y-3\right)^2}=\left|y+3\right|-\left|y-3\right|=y+3-y+3=6\)
\(D=\dfrac{a-b}{\sqrt{a}-\sqrt{b}}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}+a\sqrt{b}-b\sqrt{a}-b\sqrt{b}}{a-b}=\dfrac{\sqrt{a}\cdot\left(a-b\right)+\sqrt{b}\cdot\left(a-b\right)}{a-b}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\sqrt{a}+\sqrt{b}\)
1) Viết biểu thức sau đưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
tốt...
\(\hept{\begin{cases}x^4+y^2-4x^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2-2\right)^2+\left(y-3\right)^2=4\\\left(y-3\right)\left(x^2-2\right)+4\left(x^2-2\right)+4\left(y-3\right)=8\end{cases}}\)
Đặt \(\hept{\begin{cases}x^2-2=a\\y-3=b\end{cases}}\) thì ta có
\(\hept{\begin{cases}a^2+b^2=4\\ab+4\left(a+b\right)=8\end{cases}}\)
Tới đây thì quá đơn giản rồi nhé.
\(\left\{{}\begin{matrix}6x^2-y^2+xy-6y-12x=0\left(1\right)\\4x^2-xy+9=0\left(2\right)\end{matrix}\right.\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(2x+y\right)\left(3x-y-6\right)=0\)
\(\left[{}\begin{matrix}y=-2x\\y=6-3x\end{matrix}\right.\)
Thế lại vô (2) rồi làm tiếp sẽ ra.
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1+y-3\right)\left(x+1-y+3\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
TH1: x+y-2=0
=>x=-y+2
\(2x^2+y^2-6y-1=0\)
=>\(2\left(-y+2\right)^2+y^2-6y-1=0\)
=>\(2\left(y^2-4y+4\right)+y^2-6y-1=0\)
=>\(3y^2-14y+7=0\)
\(\Delta=\left(-14\right)^2-2\cdot3\cdot7=196-42=154>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}y=\dfrac{14-\sqrt{154}}{6}\\y=\dfrac{14+\sqrt{154}}{6}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-y+2=\dfrac{-2+\sqrt{154}}{6}\\x=\dfrac{-2-\sqrt{154}}{6}\end{matrix}\right.\)
TH2: x-y+4=0
=>x=y-4
\(2x^2+y^2-6y-1=0\)
=>\(2\left(y-4\right)^2+y^2-6y-1=0\)
=>\(2\left(y^2-8y+16\right)+y^2-6y-1=0\)
=>\(3y^2-22y+31=0\)
\(\Delta=\left(-22\right)^2-4\cdot3\cdot31=112>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}y_1=\dfrac{22-\sqrt{112}}{2\cdot3}=\dfrac{11-\sqrt{28}}{3}\\y_2=\dfrac{22+\sqrt{112}}{2\cdot3}=\dfrac{11+\sqrt{28}}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=y-4=\dfrac{11-\sqrt{28}}{3}-4=\dfrac{-1-\sqrt{28}}{3}\\x=y-4=\dfrac{11+\sqrt{28}}{3}-4=\dfrac{-1+\sqrt{28}}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^2-y^2+6y-9=0\\2x^2+y^2-6y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y^2-6y+9\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2-\left(y-3\right)^2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y-2\right)\left(x-y+4\right)=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-y+4=0\\2x^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\2\cdot\left(2-y\right)^2+y^2-6y-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\2\cdot\left(y-4\right)^2+y^2-6y-1=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2-y\\3y^2-14y+7=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=y-4\\3y^2-22y+31=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{7+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{7-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{-1+2\sqrt{7}}{3}\\y=\dfrac{11+2\sqrt{7}}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{1+2\sqrt{7}}{3}\\y=\dfrac{11-2\sqrt{7}}{3}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Vậy các cặp (x;y) thỏa mãn là: \(\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{7-2\sqrt{7}}{3}\right);\left(\dfrac{-1+2\sqrt{7}}{3};\dfrac{11+2\sqrt{7}}{3}\right);\left(-\dfrac{1+2\sqrt{7}}{3};\dfrac{11-2\sqrt{7}}{3}\right)\)