K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

bạn ơi x và y phải lớn hơn 1 bạn ạ

đây là đề thi chuyên khoa học tự nhiên hà nội nên ko sai đc đâu bạn

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Monster Vrk: sorry mình đọc không kỹ đề. Nhưng dù sao vẫn sai mà bạn =))) $x=2; y=14$ vẫn thỏa mãn nhé.

Mình không nghĩ trường ra đề thế này đâu mà là bạn chủ topic viết sai đề.

23 tháng 1 2020

Ta có :

\(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow x^2-a^2=b^2-y^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

Mà \(x+y=a+b\)

\(\Leftrightarrow x-a=b-y\)

+ Nếu \(x-a=b-y=0\Leftrightarrow x=a;b=y\)      (1)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

\(\Leftrightarrow0=0\left(TM\right)\)

+ Nếu \(x-a=b-y\ne0\Leftrightarrow x+a=b+y\)

\(\Leftrightarrow x-y=b-a\)

Lại có : \(x+y=a+b\)

\(\Leftrightarrow\hept{\begin{cases}2x=2b\\-2y=-2a\end{cases}}\)Cái trên là cộng vế với vế 2 ptr, cái dưới là trừ vế cho vế của 2 ptr nhé )

\(\Leftrightarrow\hept{\begin{cases}x=b\\y=a\end{cases}}\) (2)

Từ (1) và (2) \(\Leftrightarrow x=a;y=b\)hoặc \(x=b;y=a\)

\(\Rightarrow x^n+y^n=a^n+b^n\)(đpcm)

NV
15 tháng 4 2019

\(N=2\left(x^2+\frac{9y^2}{4}-3xy+5x+\frac{25}{4}-\frac{15}{2}y\right)+\frac{5}{2}\left(y^2-6y+9\right)+10\)

\(N=\left(x-\frac{3}{2}y+\frac{5}{2}\right)^2+\frac{5}{2}\left(y-3\right)^2+10>0\) \(\forall x;y\)

19 tháng 7 2021

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)

14 tháng 10 2018

\(A=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

vậy A luôn luôn dương với mọi x

b: \(B=x^2-xy+y^2\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2\)

\(=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

c: \(C=-x^2+4x-10\)

\(=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)\)

\(=-\left(x-2\right)^2-6< 0\)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2