Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
\(A=x^2+4y^2+15-6x-8y\)
\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)
\(A=\left(x-3\right)^2+\left(2y-2\right)^2+2\)
Có \(\left(x-3\right)^2\ge0\)với mọi x
\(\left(2y-2\right)^2\ge0\)với mọi y
Do đó \(A\ge2\)
Vậy giá trị nhỏ nhất của A là 2 đạt được \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
Câu b làm tương tự bạn sẽ tìm được giá trị nhỏ nhất của B là 4 đạt được \(\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{1}{3}\end{cases}}\)
\(A=x^2+4y^2+15-6x-8y\)
\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)
\(A=\left(x-3\right)^2+\left(2y-2\right)^2-8y+4-9-4+15\)
\(c\text{ó}\left(x-3\right)^2\ge0-v\text{ới}-m\text{ọi}-x\)
Ta sẽ tạo các tổng bình phương như sau:
\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2=0\)(1)
Do \(\left(2x-1\right)^2\ge0;\left(3y-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+\left(3y-1\right)^2\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}}\)
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
4x^2+9y^2+20x-6y+26=0
<=> 4x^2+20x+25+9y^2-6y+1=0
<=> (2x+5)^2+(3y-1)^2=0
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\3y-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=\frac{1}{3}\end{cases}}\)
vậy S={-5/2;1/3}