![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3-\sqrt{8}=3-2\sqrt{2}=\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2=\left(\sqrt{2}-1\right)^2\)
3 - \(\sqrt{8}\)
= 3 - 2\(\sqrt{2}\)
= 1 - 2\(\sqrt{2}\) + 2
= \(\left(1-\sqrt{2}\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta=4^2-4.1.(-1)=20>0\)
Theo Viét
\(\begin{cases}x_1+x_2=-4\\x_1x_2=1\end{cases}\)
\(A=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}\)
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}\)
\(=\dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}+\dfrac{5}{2}\)
\(=\dfrac{(-4)^2-2.1}{1}+\dfrac{5}{2}\)
\(=14+2,5=16,5\)
Vậy \(A=16,5\)
1) Viết biểu thức sau đưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
tốt...
![](https://rs.olm.vn/images/avt/0.png?1311)
a . Số tiền mà mẹ Bình phải trả lúc đi là :
\(10000+\left(15-0.6\right)\times16200+\left(20-15\right)\times15000=318280\left(\text{ đồng}\right)\)
b. Khi về nếu mẹ Bình bắt tiếp xe taxi ban đầu thì số tiền phải trả là :
\(20\times11200+\frac{60}{10}\times5000=264000\text{ đồng}\)
còn số tiến mẹ Bình phải trả nếu bắt xe mới là : \(318280\text{ đống}\)
Vậy mẹ Bình nên bắt xe taxi cũ vì như vậy sẽ tiết kiệm tiền hơn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=5x-\sqrt{4x^2-4x+1}\)
\(=5x-\sqrt{\left(2x-1\right)^2}\)
\(=5x-\left|2x-1\right|\)
+) Với x < 1/2
A = 5x - [ -( 2x - 1 ) ] = 5x - ( 1 - 2x ) = 5x - 1 + 2x = 7x - 1
+) Với x ≥ 1/2
A = 5x - ( 2x - 1 ) = 5x - 2x + 1 = 3x + 1
b) Với x = -2 < 1/2
=> A = 7.(-2) - 1 = -14 - 1 = -15
![](https://rs.olm.vn/images/avt/0.png?1311)
- có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\) nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)
Cộng theo vế 2 BĐT trên có:
\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Bài 2: Áp dụng BĐT AM-GM ta có:
\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(\le2+\left(x-1\right)+\left(3-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:
\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)
Từ (1);(2) xảy ra khi
\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)
Vậy x=2 là nghiệm của pt