Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)
b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)
c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Vậy x = -1 hoặc x = 3
Answer:
\(2x^3+4x^2y+2xy^2\)
\(= 2 x ( x ² + 2 x y + y ² )\)
\(= 2 x ( x + y ) ² \)
\( − 3 x ^4 y − 6 x ^3 y ^2 − 3 x ^2 y ^3 \)
\(=-3x^2y(x^2+2xy+y^2)\)
\(=-3x^2y(x+y)^2\)
\(4x^5y^2+8x^4y^3+4x^3y^4\)
\(=4x^3y^2.x^2+4x^3y^2.2xy+4x^3y^2.y^2\)
\(=4x^3y^2.(x^2+2xy+y^2)\)
\(=4x^3y^2.(x+y)^2\)
chou
tk he
xin do
bye
chiu
tk nhe
xin
bye