Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(10\left(x-7\right)-8\left(x+5\right)=6\cdot\left(-5\right)+24\)
\(10x-10\cdot7-8x-8\cdot5=\left(-30\right)+24\)
\(10x-70-8x-40=-6\)
\(10x-8x=\left(-6\right)+70+40\)
\(2x=104\)
\(x=104\div2\)
\(x=52\)
b)\(2\left(4x-8\right)-7\left(3+x\right)=6\)
\(2\cdot4x-2\cdot8-7\cdot3-7x=6\)
\(8x-16-21-7x=6\)
\(8x-7x=6+16+21\)
\(x=43\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)