Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra: n không chia hết cho 3
=> n : 3 dư 1 hoặc dư 2
=> n2 : 3 dư 12 hoặc 22
=> n2 : 3 dư 1
=> n2 = 3k + 1 ( k thuộc N )
=> n2 + 5 = 3k + 1 + 5
= 3k + 6
= 3 ( k + 2 ) chia hết cho 3
Vậy n2 + 5 chia hết cho 3 ( Điều phải chứng minh )
Theo bài ra, ta có:
4x - 5 chia hết cho 13
=> 4x - 5 + 13 chia hết cho 13
=> 4x + 8 chia hết cho 13
=> 4 ( x + 2 ) chia hết cho 13
Mà ƯCLN ( 4; 13 ) = 1
=> x + 2 chia hết cho 13
=> x + 2 = 13k ( k thuộc N* )
=> x = 13k - 2
Vậy x = 13k - 2 ( k thuộc N* )
Bài 1 :
\(79-\left(4x-13\right)=75\)
\(4x-13=4\)
\(4x=17\)
\(x=\frac{17}{4}\)
\(441:21+\left(125-3x\right)=24\)
\(21+\left(125-3x\right)=24\)
\(125-3x=3\)
\(3x=122\)
\(x=\frac{122}{3}\)
\(5x+\left(3x-11\right)=69\)
\(5x+3x-11=69\)
\(8x=80\)
\(x=10\)
\(5\left(x-1\right)+4x=4\)
\(5x-5+4x=4\)
\(9x=9\)'
\(=1\)