Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BCNN(2;3;5)=2.3.5=30
Từ 2x=3y=5z=>2x/30=3y/30=5z/30=>x/15=y/10=z/6
theo t/c dãy tỉ số=nhau:
x/15=y/10=z/6=(x+y-z)/(15+10-6)=95/19=5
=>x/15=5=>x=75
y/10=5=>y=50
z/6=5=>z=30
Vậy....
\(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo dãy tỉ số bằng nhau :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\Rightarrow\begin{cases}x=75\\y=50\\z=30\end{cases}\)
\(2x=3y=4z\)
\(\Leftrightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)
\(\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Đặt :
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=4k\\z=3k\end{matrix}\right.\)
\(2x^2-3z^2=1125\Leftrightarrow2.\left(6k\right)^2-3.\left(3k\right)^2=1125\Leftrightarrow72k^2-27k^2=1125\)
\(\Leftrightarrow45k^2=1125\)
\(\Leftrightarrow k^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
Với \(k=5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.5=30\\y=4.5=20\\z=3.5=15\end{matrix}\right.\)
Với \(k=-5\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6.\left(-5\right)=-30\\y=4.\left(-5\right)=-20\\z=3.\left(-5\right)=-15\end{matrix}\right.\)
Vậy ...
giải luôn nhé
A= -2x+4y-6z+3x+6y-6-3z
=x+10y-9z-6
B=4x-6y+8z-4x+12y-4z-5z+5x
=5x+6y-z
chúc bạn hk giỏi!!!
A = \(-2\left(x-2y+3z\right)-3\left(-x-2y+2\right)-3z\)
A = \(-2x+4y-6z+3x+6y-6-3z\)
A = \(\left(-2x+3x\right)+\left(4y+6y\right)-\left(6z-3z\right)-6\)
A = \(-x+10y-2z-6\)
B = \(2\left(2x-3y+4z\right)-4\left(x-3y+z\right)-5\left(z-x\right)\)
B = \(4x-6y+8z-4x+12y-4z-5z+5x\)
B = \(\left(4x-4x+5x\right)-\left(6y+12y\right)+\left(8z-4z-5z\right)\)
B = \(5x-18y-1z\)
Từ 2x=3y=4z
=>\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=>\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Theo TCDTSBN:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{26}{13}=2\)
Vì x/6=2=>x=12
y/4=2=>y=8
z/3=2=>z=6
Vậy.......................
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Theo dãy tỉ số bằng nhau
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
\(\Rightarrow\begin{cases}x=90\\y=120\\z=168\end{cases}\)
\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)
=>4/x=1/25=>x=100
=>7/y=1/25=>y=175
=>12/z=1/25=>z=300
\(\hept{\begin{cases}4x-3z=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\6y-x=z\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=z\\3y=z=x\\2x+3y+4z=19\end{cases}}\)
\(\Leftrightarrow\)2x+x+4x=19 \(\Leftrightarrow\)x=z = \(\frac{19}{7}\)
y=\(\frac{19}{21}\)
x= \(\frac{19}{7}\)
y= \(\frac{19}{21}\)
z= \(\frac{19}{7}\)