Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì \(4x=3y\) nên \(\frac{x}{3}=\frac{y}{4}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x=6\)
+) \(\frac{y^2}{16}=4\Rightarrow y=8\)
Vậy x = 6 ; y = 8
\(4x=3y\Rightarrow\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x^2}{4^2}=\frac{y^2}{3^2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\) và \(x^2+y^2=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)
\(\Rightarrow\frac{x^2}{16}=4\Rightarrow x^2=64\Rightarrow\begin{cases}x=6\\x=-6\end{cases}\)
\(\Rightarrow\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\begin{cases}y=6\\y=-6\end{cases}\)
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
a) \(\frac{x+1}{7}=\frac{5}{x-1}\Leftrightarrow\left(x+1\right)\left(x-1\right)=7.5\)
(x+1)(x-1)=35
=> x2-x+x-1=35
=> x2-1=35
x2=36
=>\(x=\pm6\)
b) 2z mới đúng k phải 22 nha
\(4x=5y;3y=2z\Rightarrow\frac{x}{5}=\frac{y}{4};\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{6}=\frac{3x}{3.5}=\frac{4y}{4.4}=\frac{2z}{2.6}=\frac{3x-4y+2z}{15-16+12}=\frac{42}{11}\)
bạn tự rút gọn rồi tìm x,y,z nha
Có: \(\frac{x}{2}=\frac{y}{3}\)
=> \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
=> \(\hept{\begin{cases}4x=16\\3y=18\end{cases}}\)
=> \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\) và \(4x-3y=-2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)
\(\Leftrightarrow4x=8.2=16\Leftrightarrow16\div4=4\)
\(\Leftrightarrow3y=2.9=18\Leftrightarrow y=18\div3=6\)
Vậy \(x=4;y=6\)
\(\frac{4x-3}{3}=\frac{3y+1}{7}=\frac{4x+3y-2}{5y}\)
\(=\frac{4x-3+3y+1-\left(4x+3y-2\right)}{3+7-5y}\)
\(=\frac{4x-3+3y+1-4x-3y+2}{10-5y}\)
\(=\frac{\left(4x-4x\right)+3y-3y-3+1+2}{10-5y}=0\)
\(\Rightarrow\hept{\begin{cases}4x-3=0\Leftrightarrow x=\frac{3}{4}\\3y+1=0\Leftrightarrow y=-\frac{1}{3}\end{cases}}\)
Vậy \(x=\frac{3}{4};y=-\frac{1}{3}\).
a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)
=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)
b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)
Áp dụng t/c dãy tỉ số = nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38,y = -42
\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)
Theo bài ra ta có
\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)
\(b,21x=19y\)và \(x-y=4\)
Theo bài ra ta có
\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)
\(\dfrac{4x-3y}{x+y}=\dfrac{1}{2}\Leftrightarrow8x-6y=x+y\Leftrightarrow7x-7y=0\)
\(\Leftrightarrow7x=7y\Leftrightarrow x=y\)
=> x/y = 1
bppr sung đk x;y khác 0 nhé