Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
\(2x^3-50x=0\)
<=> \(2x\left(x^2-25\right)=0\)
<=> \(2x\left(x-5\right)\left(x+5\right)=0\)
đến đây
bạn tự giải nhé
hk tốt
\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(2x^2-2x=x+3-x^2-3x\)
\(2x^2-2x=-2x+3-x^2\)
\(2x^2=3-x^2\)
\(2x^2+x^2=3\)
\(3x^2=3\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)
tớ n g u nên cần tg suy nghĩ thêm :v
câu a tìm ra r nè , vất vả :v ( kiên trì lắm đấy )
\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2+1\right)\)
\(9x^3+9x^2-4x-4-3x^2-3x-2x^2-2=0\)
\(6x^3+7x^2-7x-6=0\)
\(\left(6x^2+13x+6\right)\left(x-1\right)=0\)
\(Th1:6x^2+9x+4x+6=0\)
\(\Leftrightarrow\left[3x\left(2x+3\right)+2\left(2x+3\right)\right]=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\3x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)
\(Th2:x-1=0\Leftrightarrow x=1\)
1)\(2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy : x=3 là nghiệm PT
2)\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy:....
3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)
\(\Leftrightarrow-x+21=0\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\)
Vậy:......
4) \(x\left(x^2-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy:........
5)\(4x+20=0\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
Vậy:...
6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)
\(\Leftrightarrow-2=0\)(vô lí)
Vậy : PT vô nghiệm
7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)
\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)
\(\Leftrightarrow-8+4x-9+3x=0\)
\(\Leftrightarrow-17+7x=0\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\frac{17}{7}\)
8) Làm tương tự
9) \(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2-5x+7=0\)
\(\Leftrightarrow-3x+9=0\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
#H
1.\(2x+6=0\)
\(\Leftrightarrow2\left(x+3\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
2.\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)
3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
ĐKXĐ :\(x\ne\pm2\)
Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-x+10=x^2-11\)
\(\Leftrightarrow21-x=0\)
\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)
4.\(x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)
5.\(4x+20=0\)
\(\Leftrightarrow4\left(x+5\right)=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)
6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ : \(x\notin\left\{-1;0\right\}\)
Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Rightarrow2x^2+2x-2=2x^2+2x\)
\(\Leftrightarrow0x=2\)(Vô lí)
Vậy PT vô nghiệm
7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)
\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)
\(\Rightarrow4x+2=9-3x\)
\(\Leftrightarrow7x=7\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)
8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
ĐKXĐ : \(x\notin\left\{0;2\right\}\)
Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)
9.\(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2=5x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................